skip to main content


Search for: All records

Award ID contains: 1559380

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Behavioral phenotypic traits or “animal personalities” drive critical evolutionary processes such as fitness, disease and information spread. Yet thestability of behavioral traits, essential by definition, has rarely been measured over developmentally significant periods of time, limiting our understanding of how behavioral stability interacts with ontogeny. Based on 32 years of social behavioral data for 179 wild bottlenose dolphins, we show that social traits (associate number, time alone and in large groups) are stable from infancy to late adulthood. Multivariate analysis revealed strong relationships between these stable metrics within individuals, suggesting a complex behavioral syndrome comparable to human extraversion. Maternal effects (particularly vertical social learning) and sex-specific reproductive strategies are likely proximate and ultimate drivers for these patterns. We provide rare empirical evidence to demonstrate the persistence of social behavioral traits over decades in a non-human animal.

     
    more » « less
  2. Abstract

    Kinship plays a fundamental role in the evolution of social systems and is considered a key driver of group living. To understand the role of kinship in the formation and maintenance of social bonds, accurate measures of genetic relatedness are critical. Genotype‐by‐sequencing technologies are rapidly advancing the accuracy and precision of genetic relatedness estimates for wild populations. The ability to assign kinship from genetic data varies depending on a species’ or population's mating system and pattern of dispersal, and empirical data from longitudinal studies are crucial to validate these methods. We use data from a long‐term behavioural study of a polygynandrous, bisexually philopatric marine mammal to measure accuracy and precision of parentage and genetic relatedness estimation against a known partial pedigree. We show that with moderate but obtainable sample sizes of approximately 4,235 SNPs and 272 individuals, highly accurate parentage assignments and genetic relatedness coefficients can be obtained. Additionally, we subsample our data to quantify how data availability affects relatedness estimation and kinship assignment. Lastly, we conduct a social network analysis to investigate the extent to which accuracy and precision of relatedness estimation improve statistical power to detect an effect of relatedness on social structure. Our results provide practical guidance for minimum sample sizes and sequencing depth for future studies, as well as thresholds for post hoc interpretation of previous analyses.

     
    more » « less
  3. Abstract

    Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia—one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty‐three microsatellite loci.

    We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population—for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low.

    Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human‐induced changes to the coastal ecosystem it inhabits.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    As demands for wildlife tourism increase, provisioning has become a popular means of providing up-close viewing to the public. At Monkey Mia, Shark Bay, Australia, up to five adult female Indo-Pacific bottlenose dolphins ( Tursiops aduncus ) visit a 100 m stretch of beach daily to receive fish handouts. In 2011, a severe marine heatwave (MHW) devastated seagrass and fish populations in Shark Bay. Offspring survival declined precipitously among seagrass specialists (dolphins that forage disproportionately in seagrass habitat). As all provisioned dolphins at the site are seagrass specialists, we examined how provisioned and non-provisioned seagrass specialists responded to the MHW. Using 27 years of data we compare habitat use, home range size, calf mortality, and predation risk between provisioned and non-provisioned females and their offspring before and after the MHW. Our results show that provisioned females have extremely small home ranges compared to non-provisioned females, a pattern attributable to their efforts to remain near the site of fish handouts. However, weaned offspring (juveniles) born to provisioned females who are not provisioned themselves also had much smaller home ranges, suggesting a persistent maternal effect on their behavior. After the MHW, adult females increased their use of seagrass habitats, but not their home range size. Provisioned females had significantly lower calf mortality than non-provisioned females, a pattern most evident pre-MHW, and, in the first 5 years after the MHW (peri-MHW, 2011–2015), calf mortality did not significantly increase for either group. However, the ecosystem did not recover, and post-MHW (2016–2020), calf mortality was substantially higher, regardless of provisioning status. With few survivors, the impact of the MHW on juvenile mortality post-weaning is not known. However, over three decades, juvenile mortality among offspring of provisioned vs. non-provisioned females did not statistically differ. Thus, the survival benefits accrued to calves in the provisioned group likely cease after weaning. Finally, although shark attack rates on seagrass specialists did not change over time, elevated predation on calves cannot be ruled out as a cause of death post-MHW. We discuss our results as they relate to anthropogenic influences on dolphin behavioral plasticity and responses to extreme climate events. 
    more » « less