Because climate change and the biodiversity crisis are driven by human actions, determining psychological mechanisms underpinning support for environmental action is an urgent priority. Here, we experimentally tested for mechanisms promoting conservation-related motivation and behavior toward a flagship species, wild Tamanend's bottlenose dolphins. Following evidence that empathy increases prosocial motivations and behavior, and that the ability to identify individual humans promotes empathy, we tested whether this relationship applied to the ability to identify individual dolphins. Participants identified dolphins from their dorsal fins at above chance levels, and better individuation correlated with higher empathy for dolphins and higher willingness to pledge environmental behaviors. Pairing a narrative with an image of an injured dolphin leads to higher donations relative to a narrative alone. Our novel finding that the ability to individually identify dolphins relates to empathy and conservation-related behavior suggests pathways for strengthening environmental attitudes and behavior.
more »
« less
The reliability of pigment pattern‐based identification of wild bottlenose dolphins
Abstract Long‐term studies often rely on natural markings for individual identification across time. The primary method for identification in small cetaceans relies on dorsal fin shape, scars, and other natural markings. However, dorsal fin markings can vary substantially over time and the dorsal fin can become unrecognizable after an encounter with a boat or shark. Although dorsal fins have the advantage in that they always break the water surface when the cetacean breathes, other physical features, such as body scars and pigmentation patterns can supplement. The goal of this study was to explore the use of dorso‐lateral pigment patterns to identify wild bottlenose dolphins. We employed photographic pigment matching tests to determine if pigmentation patterns showed (1) longitudinal consistency and (2) bilateral symmetry using a 30 yr photographic database of bottlenose dolphins (Tursiops aduncus). We compared experienced dolphin researchers and inexperienced undergraduate student subjects in their ability to accurately match images. Both experienced and inexperienced subjects correctly matched dolphin individuals at a rate significantly above chance, even though they only had 10 s to make the match. These results demonstrate that pigment patterns can be used to reliably identify individual wild bottlenose dolphins, and likely other small cetacean species at other sites.
more »
« less
- Award ID(s):
- 1559380
- PAR ID:
- 10042181
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Marine Mammal Science
- Volume:
- 34
- Issue:
- 1
- ISSN:
- 0824-0469
- Format(s):
- Medium: X Size: p. 113-124
- Size(s):
- p. 113-124
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Anthropogenic global change is occurring at alarming rates, leading to increased urgency in the ability to monitor wildlife health in real time. Monitoring sentinel marine species, such as bottlenose dolphins, is particularly important due to extensive anthropogenic modifications to their habitats. The most common non-invasive method of monitoring cetacean health is documentation of skin lesions, often associated with poor health or disease, but the current methodology is inefficient and imprecise. Recent advancements in technology, such as machine learning, can provide researchers with more efficient ecological monitoring methods to address health questions at both the population and the individual levels. Our work develops a machine learning model to classify skin lesions on the understudied Tamanend's bottlenose dolphins (Tursiops erebennus) of the Chesapeake Bay, using manual estimates of lesion presence in photographs. We assess the model's performance and find that our best model performs with a high mean average precision (65.6 %–86.8 %), and generally increased accuracy with improved photo quality. We also demonstrate the model's ability to address ecological questions across scales by generating model-based estimates of lesion prevalence and testing the effect of gregariousness on health status. At the population level, our model accurately estimates a prevalence of 72.1 % spot and 27.3 % fringe ring lesions, with a slight underprediction compared to manual estimates (82.2 % and 32.1 %). On the other hand, we find that individual-level analyses from the model predictions may be more sensitive to data quality, and thus, some individual scale questions may not be feasible to address if data quality is inconsistent. Manually, we do find that lesion presence in individuals suggests a positive relationship between lesion presence and gregariousness. This work demonstrates that object detection models on photographic data are reasonably successful, highly efficient, and provide initial estimates on the health status of understudied populations of bottlenose dolphins.more » « less
-
Enrico Pirotta (Ed.)Abstract AimUnderstanding the distribution of marine organisms is essential for effective management of highly mobile marine predators that face a variety of anthropogenic threats. Recent work has largely focused on modelling the distribution and abundance of marine mammals in relation to a suite of environmental variables. However, biotic interactions can largely drive distributions of these predators. We aim to identify how biotic and abiotic variables influence the distribution and abundance of a particular marine predator, the bottlenose dolphin (Tursiops truncatus), using multiple modelling approaches and conducting an extensive literature review. LocationWestern North Atlantic continental shelf. MethodsWe combined widespread marine mammal and fish and invertebrate surveys in an ensemble modelling approach to assess the relative importance and capacity of the environment and other marine species to predict the distribution of both coastal and offshore bottlenose dolphin ecotypes. We corroborate the modelled results with a systematic literature review on the prey of dolphins throughout the region to help explain patterns driven by prey availability, as well as reveal new ones that may not necessarily be a predator–prey relationship. ResultsWe find that coastal bottlenose dolphin distributions are associated with one family of fishes, the Sciaenidae, or drum family, and predictions slightly improve when using only fish versus only environmental variables. The literature review suggests that this tight coupling is likely a predator–prey relationship. Comparatively, offshore dolphin distributions are more strongly related to environmental variables, and predictions are better for environmental‐only models. As revealed by the literature review, this may be due to a mismatch between the animals caught in the fish and invertebrate surveys and the predominant prey of offshore dolphins, notably squid. Main ConclusionsIncorporating prey species into distribution models, especially for coastal bottlenose dolphins, can help inform ecological relationships and predict marine predator distributions.more » « less
-
Caballero, Susana (Ed.)Bottlenose dolphins ( Tursiops truncatus ) are migratory marine mammals that live in both open-ocean and coastal habitats. Although widely studied, little is known about their occurrence patterns in the highly urbanized estuary of the Chesapeake Bay, USA. The goal of this study was to establish the spatial and temporal distribution of bottlenose dolphins throughout this large estuarine system and use statistical modeling techniques to determine how their distribution relates to environmental factors. Three years (April-October 2017–2019) of dolphin sighting reports from a citizen-science database, Chesapeake DolphinWatch, were analyzed. The dolphins had a distinct temporal pattern, most commonly sighted during summer months, peaking in July. This pattern of observed occurrence was confirmed with systematic, passive acoustic detections of dolphin echolocation clicks from local hydrophones. Using spatially-exclusive Generalized Additive Models (GAM), dolphin presence was found to be significantly correlated to spring tidal phase, warm water temperature (24–30°C), and salinities ranging from 6–22 PPT. We were also able to use these GAMs to predict dolphin occurrence in the Bay. These predictions were statistically correlated to the actual number of dolphin sighting reported to Chesapeake DolphinWatch during that time. These models for dolphin presence can be implemented as a predictive tool for species occurrence and inform management of this protected species within the Chesapeake Bay.more » « less
-
Abstract Barnacles can reveal much about the physiology, health, and spatial ecology of their cetacean hosts. Here, we examine how temperature and hydrodynamic factors impact presence ofXenobalanus globicipitis, a pseudo‐stalked barnacle that attaches exclusively to cetaceans. We hypothesized that temperature is a key environmental factor (i.e., water temperature) and physiological factor, in thatX. globicipitisprefers the warmest skin temperature for attachment, possibly as a mechanism for survival in colder waters. First, we demonstrate a global relationship between spatial ecology of host species and presence ofX. globicipitis. Notably,X. globicipitisis absent in the four species occupying waters with the lowest sea surface temperature (SST) year‐round, but present in migratory species that likely acquire the barnacle in waters with higher SST. Second, barnacle attachment location on common bottlenose dolphin (Tursiops truncatus) dorsal fins corresponds with fin temperature and hydrodynamics. Although body temperature may influence attachment location on the body of the animal, hydrodynamic forces, as previously proposed, determine how well barnacles can remain attached during the adult stage.X. globicipitisprevalence likely provides important bioindicator, ecological, and physiological information about its host. As parasitic infestation has some cost, these results have implications for cetacean health in warming seas.more » « less
An official website of the United States government
