Objectives: The objectives were to (a) evaluate whether marginal reproductive gains from early weaning (EW) calves of first-calf replacement heifers extend throughout the animal’s productive life and (b) compare via cost–benefit analysis EW with conventional weaning (CW) practices on a vertically integrated ranch in Florida, USA. Materials and Methods: A system dynamics model was developed to evaluate CW versus EW of calves from replacement heifers that calve in the first 21 or 42 d of the calving season. A combination of sensitivity analyses and deterministic management tests (EW vs. CW and 21- vs. 42-d calving seasons) were simulated and compared across a range of 18 production and financial metrics, including net present value, over the useful life of one generation of replacement heifers. We hypothesized that EW calves from replacement heifers would improve reproductive performance, resulting in greater total calves produced and, therefore, improved cow-calf and whole-system profitability. Results and Discussion: The 42-d calving criteria for EW created significant production and financial gains and outperformed the 21-d calving criteria. Counterintuitively, these gains did not arise in the cow-calf or feedyard segments (which saw financial declines) but in the stocker segment due to more efficient livestock gains facilitated by lower weaning weights of incoming calves. Sensitivity analyses corroborated these trade-offs. Feedyard sale price (i.e., value received for finished cattle) was the most influential factor influencing whole-system profitability. Implications and Applications: Trade-offs and incentives between enterprises may provide misleading feedback and mask changes that improve the system as a whole (e.g., EW reduced calf weaning weights and reinforced the reproductive performance pressure on management; gains at the stocker segment may mask EW benefits at the cow-calf level, making the cow-calf enterprise more reliant on short-term adjustments, a behavior known as “shifting the burden”). 
                        more » 
                        « less   
                    
                            
                            Elevated Calf Mortality and Long-Term Responses of Wild Bottlenose Dolphins to Extreme Climate Events: Impacts of Foraging Specialization and Provisioning
                        
                    
    
            As demands for wildlife tourism increase, provisioning has become a popular means of providing up-close viewing to the public. At Monkey Mia, Shark Bay, Australia, up to five adult female Indo-Pacific bottlenose dolphins ( Tursiops aduncus ) visit a 100 m stretch of beach daily to receive fish handouts. In 2011, a severe marine heatwave (MHW) devastated seagrass and fish populations in Shark Bay. Offspring survival declined precipitously among seagrass specialists (dolphins that forage disproportionately in seagrass habitat). As all provisioned dolphins at the site are seagrass specialists, we examined how provisioned and non-provisioned seagrass specialists responded to the MHW. Using 27 years of data we compare habitat use, home range size, calf mortality, and predation risk between provisioned and non-provisioned females and their offspring before and after the MHW. Our results show that provisioned females have extremely small home ranges compared to non-provisioned females, a pattern attributable to their efforts to remain near the site of fish handouts. However, weaned offspring (juveniles) born to provisioned females who are not provisioned themselves also had much smaller home ranges, suggesting a persistent maternal effect on their behavior. After the MHW, adult females increased their use of seagrass habitats, but not their home range size. Provisioned females had significantly lower calf mortality than non-provisioned females, a pattern most evident pre-MHW, and, in the first 5 years after the MHW (peri-MHW, 2011–2015), calf mortality did not significantly increase for either group. However, the ecosystem did not recover, and post-MHW (2016–2020), calf mortality was substantially higher, regardless of provisioning status. With few survivors, the impact of the MHW on juvenile mortality post-weaning is not known. However, over three decades, juvenile mortality among offspring of provisioned vs. non-provisioned females did not statistically differ. Thus, the survival benefits accrued to calves in the provisioned group likely cease after weaning. Finally, although shark attack rates on seagrass specialists did not change over time, elevated predation on calves cannot be ruled out as a cause of death post-MHW. We discuss our results as they relate to anthropogenic influences on dolphin behavioral plasticity and responses to extreme climate events. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10293580
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)ABSTRACT Metabolism is thought to mediate the connection between environmental selection pressures and a broad array of life history tradeoffs, but tests are needed. High juvenile predation correlates with fast growth, which may be achieved via fast juvenile metabolism. Fast offspring metabolism and growth can create physiological costs later in life that should be minimized in species with low adult mortality. Yet, relationships between juvenile metabolism and mortality at offspring versus adult stages are unexplored. We found that post-natal metabolism was positively correlated with adult mortality but not nest predation rates among 43 songbird species on three continents. Nest predation, but not adult mortality, explained additional variation in growth rates beyond metabolism. Our results suggest that metabolism may not be the mechanism underlying the relationships between growth and mortality at different life stages.more » « less
- 
            Kelp forests of the California Current System have experienced prolonged marine heatwave (MHW) events that overlap in time with the phenology of life history events (e.g., gametogenesis and spawning) of many benthic marine invertebrates. To study the effect of thermal stress from MHWs during gametogenesis in the purple sea urchin ( Strongylocentrotus purpuratus ) and further, whether MHWs might induce transgenerational plasticity (TGP) in thermal tolerance of progeny, adult urchins were acclimated to two conditions in the laboratory – a MHW temperature of 18°C and a non-MHW temperature of 13°C. Following a four-month long acclimation period (October–January), adults were spawned and offspring from each parental condition were reared at MHW (18°C) and non-MHW temperatures (13°C), creating a total of four embryo treatment groups. To assess transgenerational effects for each of the four groups, we measured thermal tolerance of hatched blastula embryos in acute thermal tolerance trials. Embryos from MHW-acclimated females were more thermally tolerant with higher LT 50 values as compared to progeny from non-MHW-acclimated females. Additionally, there was an effect of female acclimation state on offspring body size at two stages of embryonic development - early gastrulae and prism, an early stage echinopluteus larvae. To assess maternal provisioning as means to also alter embryo performance, we assessed gamete traits from the differentially acclimated females, by measuring size and biochemical composition of eggs. MHW-acclimated females had eggs with higher protein concentrations, while egg size and lipid content showed no differences. Our results indicate that TGP plays a role in altering the performance of progeny as a function of the thermal history of the female, especially when thermal stress coincides with gametogenesis. In addition, the data on egg provisioning show that maternal experience can influence embryo traits via egg protein content. Although this is a laboratory-based study, the results suggest that TGP may play a role in the resistance and tolerance of S. purpuratus early stages in the natural kelp forest setting.more » « less
- 
            Research on sex biases in longevity in mammals often assumes that male investment in competition results in a female survival advantage that is constant throughout life. We use 35 years of longitudinal data on 1003 wild bottlenose dolphins ( Tursiops aduncus ) to examine age-specific mortality, demonstrating a time-varying effect of sex on mortality hazard over the five-decade lifespan of a social mammal. Males are at higher risk of mortality than females during the juvenile period, but the gap between male and female mortality hazard closes in the mid-teens, coincident with the onset of female reproduction. Female mortality hazard is non-significantly higher than male mortality hazard in adulthood, resulting in a moderate male bias in the oldest age class. Bottlenose dolphins have an intensely male-competitive mating system, and juvenile male mortality has been linked to social competition. Contrary to predictions from sexual selection theory, however, male–male competition does not result in sustained male-biased mortality. As female dolphins experience high costs of sexual coercion in addition to long and energetically expensive periods of gestation and lactation, this suggests that substantial female investment in reproduction can elevate female mortality risk and impact sex biases in lifespan.more » « less
- 
            Abstract The viviparity-driven conflict hypothesis postulates that the evolution of matrotrophy (postfertilization maternal provisioning) will result in a shift from a pre- to postcopulatory mate choice and thus accelerate the evolution of postcopulatory reproductive isolation. Here, we perform artificial insemination experiments on Heterandria formosa, a matrotrophic poeciliid fish, to probe for evidence of postcopulatory female choice. We established laboratory populations from Wacissa River (WR) and Lake Jackson (LJ). The WR females normally produce larger offspring than the LJ females. We artificially inseminated females with sperm from each population or from both populations simultaneously. When LJ females were inseminated with sperm from WR and LJ males, they allocated fewer resources to WR-sired offspring than when they were inseminated with WR sperm alone. The LJ females carrying developing offspring sired by males from different populations were thus able to discriminate against non-resident males when allocating resources to developing young. The WR females, which normally produce larger offspring than LJ females, did not discriminate among males from different localities. These findings provide insights into the ability of females from one population to exercise a form of postcopulatory mate selection.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    