skip to main content

Search for: All records

Award ID contains: 1618477

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Panoptic segmentation requires segments of both “things” (countable object instances) and “stuff” (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for “things”) and semantic segmentation (for “stuff”) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do not correlate well with natural occlusion relationship. To resolve this issue, we propose a branch that is tasked with modeling how two instance masks should overlap one another as a binary relation. Our method, named OCFusion, is lightweight but particularly effective in the instance fusion process. OCFusion is trained with the ground truth relation derived automatically from the existing dataset annotations. We obtain state-of-the-art results on COCO and show competitive results on the Cityscapes panoptic segmentation benchmark.
  2. We make an attempt to address topology-awareness for 3D shape reconstruction. Two types of high-level shape typologies are being studied here, namely genus (number of cuttings/holes) and connectivity (number of connected components), which are of great importance in 3D object reconstruction/understanding but have been thus far disjoint from the existing dense voxel-wise prediction literature. We propose a topology-aware shape autoencoder component (TPWCoder) by approximating topology property functions such as genus and connectivity with neural networks from the latent variables. TPWCoder can be directly combined with the existing 3D shape reconstruction pipelines for end-to-end training and prediction. On the challenging A Big CAD Model Dataset (ABC), TPWCoder demonstrates a noticeable quantitative and qualitative improvement over the competing methods, and it also shows improved quantitative result on the ShapeNet dataset.
  3. We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning. The learning objective is achieved by providing signals to the latent encoding/embedding in VAE without changing its main backbone architecture, hence retaining the desirable properties of the VAE. We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE. In the unsupervised strategy, we guide the VAE learning by introducing a lightweight decoder that learns latent geometric transformation and principal components; in the supervised strategy, we use an adversarial excitation and inhibition mechanism to encourage the disentanglement of the latent variables. Guided-VAE enjoys its transparency and simplicity for the general representation learning task, as well as disentanglement learning. On a number of experiments for representation learning, improved synthesis/sampling, better disentanglement for classification, and reduced classification errors in meta learning have been observed.
  4. In this paper, we tackle an important task in computer vision: any view object recognition. In both training and testing, for each object instance, we are only given its 2D image viewed from an unknown angle. We propose a computational framework by designing object and viewer-centered neural networks (OVCNet) to recognize an object instance viewed from an arbitrary unknown angle. OVCNet consists of three branches that respectively implement object-centered, 3D viewer-centered, and in-plane viewer-centered recognition. We evaluate our proposed OVCNet using two metrics with unseen views from both seen and novel object instances. Experimental results demonstrate the advantages of OVCNet over classic 2D-image-based CNN classi fiers, 3D-object (inferred from 2D image) classifiers, and competing multi-view based approaches. It gives rise to a viable and practical computing framework that combines both viewpoint-dependent and viewpoint-independent features for object recognition from any view.
  5. Emerging edge devices such as sensor nodes are increasingly being tasked with non-trivial tasks related to sensor data processing and even application-level inferences from this sensor data. These devices are, however, extraordinarily resource-constrained in terms of CPU power (often Cortex M0-3 class CPUs), available memory (in few KB to MBytes), and energy. Under these constraints, we explore a novel approach to character recognition using local binary pattern networks, or LBPNet, that can learn and perform bit-wise operations in an end-to-end fashion. LBPNet has its advantage for characters whose features are composed of structured strokes and distinctive outlines. LBPNet uses local binary comparisons and random projections in place of conventional convolution (or approximation of convolution) operations, providing an important means to improve memory efficiency as well as inference speed. We evaluate LBPNet on a number of character recognition benchmark datasets as well as several object classification datasets and demonstrate its effectiveness and efficiency.