skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1635014

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a linear dynamical system affected by noise, we consider the problem of optimally placing sensors (at design-time) subject to certain budget constraints to minimize the trace of the steady-state error covariance of the Kalman filter. Previous work has shown that this problem is NP-hard in general. In this paper, we impose additional structure by considering systems whose dynamics are given by a stochastic matrix corresponding to an underlying consensus network. In the case when there is a single input at one of the nodes in a tree network, we provide an optimal strategy (computed in polynomial-time) to place the sensors over the network. However, we show that when the network has multiple inputs, the optimal sensor placement problem becomes NP-hard. 
    more » « less
  2. We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes. 
    more » « less