skip to main content


Search for: All records

Award ID contains: 1637397

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study higher statistical moments of Distortion for randomized social choice in a metric implicit utilitarian model. The Distortion of a social choice mechanism is the expected approximation factor with respect to the optimal utilitarian social cost (OPT). The k'th moment of Distortion is the expected approximation factor with respect to the k'th power of OPT. We consider mechanisms that elicit alternatives by randomly sampling voters for their favorite alternative. We design two families of mechanisms that provide constant (with respect to the number of voters and alternatives) k'th moment of Distortion using just k samples if all voters can then participate in a vote among the proposed alternatives, or 2k-1 samples if only the sampled voters can participate. We also show that these numbers of samples are tight. Such mechanisms deviate from a constant approximation to OPT with probability that drops exponentially in the number of samples, independent of the total number of voters and alternatives. We conclude with simulations on real-world Participatory Budgeting data to qualitatively complement our theoretical insights.

     
    more » « less
  2. Many societal decision problems lie in high-dimensional continuous spaces not amenable to the voting techniques common for their discrete or single-dimensional counterparts. These problems are typically discretized before running an election or decided upon through negotiation by representatives. We propose a algorithm called Iterative Local Voting for collective decision-making in this setting. In this algorithm, voters are sequentially sampled and asked to modify a candidate solution within some local neighborhood of its current value, as defined by a ball in some chosen norm, with the size of the ball shrinking at a specified rate. We first prove the convergence of this algorithm under appropriate choices of neighborhoods to Pareto optimal solutions with desirable fairness properties in certain natural settings: when the voters' utilities can be expressed in terms of some form of distance from their ideal solution, and when these utilities are additively decomposable across dimensions. In many of these cases, we obtain convergence to the societal welfare maximizing solution.We then describe an experiment in which we test our algorithm for the decision of the U.S. Federal Budget on Mechanical Turk with over 2,000 workers, employing neighborhoods defined by various L-Norm balls. We make several observations that inform future implementations of such a procedure. 
    more » « less