skip to main content

Search for: All records

Award ID contains: 1637598

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing. 
    more » « less
    Free, publicly-accessible full text available December 1, 2023
  2. We study reinforcement learning (RL) in a setting with a network of agents whose states and actions interact in a local manner where the objective is to find localized policies such that the (discounted) global reward is maximized. A fundamental challenge in this setting is that the state-action space size scales exponentially in the number of agents, rendering the problem intractable for large networks. In this paper, we propose a scalable actor critic (SAC) framework that exploits the network structure and finds a localized policy that is an [Formula: see text]-approximation of a stationary point of the objective for some [Formula: see text], with complexity that scales with the local state-action space size of the largest [Formula: see text]-hop neighborhood of the network. We illustrate our model and approach using examples from wireless communication, epidemics, and traffic. 
    more » « less
  3. This paper presents a black-box framework for accelerating packing optimization solvers. Our method applies to packing linear programming problems and a family of convex programming problems with linear constraints. The framework is designed for high-dimensional problems, for which the number of variables n is much larger than the number of measurements m. Given an [Formula: see text] problem, we construct a smaller [Formula: see text] problem, whose solution we use to find an approximation to the optimal solution. Our framework can accelerate both exact and approximate solvers. If the solver being accelerated produces an α-approximation, then we produce a [Formula: see text]-approximation of the optimal solution to the original problem. We present worst-case guarantees on run time and empirically demonstrate speedups of two orders of magnitude. 
    more » « less