skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimization Fractional Prophet Inequalities for Sequential Procurement
We consider a minimization variant on the classical prophet inequality with monomial cost functions. A firm would like to procure some fixed amount of a divisible commodity from sellers that arrive sequentially. Whenever a seller arrives, the seller’s cost function is revealed, and the firm chooses how much of the commodity to buy. We first show that if one restricts the set of distributions for the coefficients to a family of natural distributions that include, for example, the uniform and truncated normal distributions, then there is a thresholding policy that is asymptotically optimal in the number of sellers. We then compare two scenarios based on whether the firm has in-house production capabilities or not. We precisely compute the optimal algorithm’s competitive ratio when in-house production capabilities exist and for a special case when they do not. We show that the main advantage of the ability to produce the commodity in house is that it shields the firm from price spikes in worst-case scenarios. Funding: This work was supported by NSF Grants [CNS-2146814, CPS-2136197, CNS-2106403, NGSDI-2105648].  more » « less
Award ID(s):
2146814 2136197 2106403 2105648 1637598
PAR ID:
10483493
Author(s) / Creator(s):
; ;
Publisher / Repository:
Mathematics of Operations Research
Date Published:
Journal Name:
Mathematics of Operations Research
ISSN:
0364-765X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a general non-stochastic online pricing bandit setting in a procurement scenario where a buyer with a budget wants to procure items from a fixed set of sellers to maximize the buyer's reward by dynamically offering purchasing prices to the sellers, where the sellers' costs and values at each time period can change arbitrarily and the sellers determine whether to accept the offered prices to sell the items. This setting models online pricing scenarios of procuring resources or services in multi-agent systems. We first consider the offline setting when sellers' costs and values are known in advance and investigate the best fixed-price policy in hindsight. We show that it has a tight approximation guarantee with respect to the offline optimal solutions. In the general online setting, we propose an online pricing policy, Granularity-based Pricing (GAP), which exploits underlying side-information from the feedback graph when the budget is given as the input. We show that GAP achieves an upper bound of O(n{v_{max}}{c_{min}}sqrt{B/c_{min}}ln B) on the alpha-regret where n, v_{max}, c_{min}, and B are the number, the maximum value, the minimum cost of sellers, and the budget, respectively. We then extend it to the unknown budget case by developing a variant of GAP, namely Doubling-GAP, and show its alpha-regret is at most O(n{v_{max}}{c_{min}}sqrt{B/c_{min}}ln2 B). We also provide an alpha-regret lower bound Omega(v_{max}sqrt{Bn/c_{min}}) of any online policy that is tight up to sub-linear terms. We conduct simulation experiments to show that the proposed policy outperforms the baseline algorithms. 
    more » « less
  2. Deligkas, Argyrios; Filos-Ratsikas, Aris (Ed.)
    We study a dynamic model of procurement auctions in which the agents (sellers) will abandon the auction if their utility does not satisfy their private target, in any given round. We call this “abandonment” and analyze its consequences on the overall cost to the mechanism designer (buyer), as it reduces competition in future rounds of the auction and drives up the price. We show that in order to maintain competition and minimize the overall cost, the mechanism designer has to adopt an inefficient (per-round) allocation, namely to assign the demand to multiple agents in a single round. We focus on threshold mechanisms as a simple way to achieve ex-post incentive compatibility, akin to reserves in revenue-maximizing forward auctions. We then consider the optimization problem of finding the optimal thresholds. We show that even though our objective function does not have the optimal substructure property in general, if the underlying distributions satisfy some regularity properties, the global optimal solution lies within a region where the optimal thresholds are monotone and can be calculated with a greedy approach, or even more simply in a parallel fashion. 
    more » « less
  3. In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as it could with an observable queue and length-dependent variable prices. Next, we study demand and inventory signaling in online markets: customers make strategic purchasing decisions, knowing the price will decrease if an item does not sell out. The firm aims to convince customers to buy now at a higher price. We show that the optimal signaling mechanism is public, and sends all customers the same information. Finally, we consider customers whose ex ante utility is not simply their expected ex post utility, but instead a function of its distribution. We bound the number of signals needed for the firm to generate their optimal utility and provide a convex program reduction of the firm's problem. 
    more » « less
  4. null (Ed.)
    Abstract We study a new kind of nonzero-sum stochastic differential game with mixed impulse/switching controls, motivated by strategic competition in commodity markets. A representative upstream firm produces a commodity that is used by a representative downstream firm to produce a final consumption good. Both firms can influence the price of the commodity. By shutting down or increasing generation capacities, the upstream firm influences the price with impulses. By switching (or not) to a substitute, the downstream firm influences the drift of the commodity price process. We study the resulting impulse-regime switching game between the two firms, focusing on explicit threshold-type equilibria. Remarkably, this class of games naturally gives rise to multiple potential Nash equilibria, which we obtain thanks to a verification-based approach. We exhibit three candidate types of equilibria depending on the ultimate number of switches by the downstream firm (zero, one or an infinite number of switches). We illustrate the diversification effect provided by vertical integration in the specific case of the crude oil market. Our analysis shows that the diversification gains strongly depend on the pass-through from the crude price to the gasoline price. 
    more » « less
  5. Abstract Global product platforms can reduce production costs through economies of scale and learning but may decrease revenues by restricting the ability to customize for each market. We model the global platforming problem as a Nash equilibrium among oligopolistic competing firms, each maximizing its profit across markets with respect to its pricing, design, and platforming decisions. We develop and compare two methods to identify Nash equilibria: (1) a sequential iterative optimization (SIO) algorithm, in which each firm solves a mixed-integer nonlinear programming problem globally, with firms iterating until convergence; and (2) a mathematical program with equilibrium constraints (MPEC) that solves the Karush Kuhn Tucker conditions for all firms simultaneously. The algorithms’ performance and results are compared in a case study of plug-in hybrid electric vehicles where firms choose optimal battery capacity and whether to platform or differentiate battery capacity across the US and Chinese markets. We examine a variety of scenarios for (1) learning rate and (2) consumer willingness to pay (WTP) for range in each market. For the case of two firms, both approaches find the Nash equilibrium in all scenarios. On average, the SIO approach solves 200 times faster than the MPEC approach, and the MPEC approach is more sensitive to the starting point. Results show that the optimum for each firm is to platform when learning rates are high or the difference between consumer willingness to pay for range in each market is relatively small. Otherwise, the PHEVs are differentiated with low-range for China and high-range for the US. 
    more » « less