skip to main content


Title: The Online Knapsack Problem with Departures
The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.  more » « less
Award ID(s):
2146814 2136197 2106403 2105648 1637598
NSF-PAR ID:
10389448
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
3
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The design of online algorithms has tended to focus on algorithms with worst-case guarantees, e.g., bounds on the competitive ratio. However, it is well-known that such algorithms are often overly pessimistic, performing sub-optimally on non-worst-case inputs. In this paper, we develop an approach for data-driven design of online algorithms that maintain near-optimal worst-case guarantees while also performing learning in order to perform well for typical inputs. Our approach is to identify policy classes that admit global worst-case guarantees, and then perform learning using historical data within the policy classes. We demonstrate the approach in the context of two classical problems, online knapsack, and online set cover, proving competitive bounds for rich policy classes in each case. Additionally, we illustrate the practical implications via a case study on electric vehicle charging. 
    more » « less
  2. We study online convex optimization with switching costs, a practically important but also extremely challenging problem due to the lack of complete offline information. By tapping into the power of machine learning (ML) based optimizers, ML-augmented online algorithms (also referred to as expert calibration in this paper) have been emerging as state of the art, with provable worst-case performance guarantees. Nonetheless, by using the standard practice of training an ML model as a standalone optimizer and plugging it into an ML-augmented algorithm, the average cost performance can be highly unsatisfactory. In order to address the "how to learn" challenge, we propose EC-L2O (expert-calibrated learning to optimize), which trains an ML-based optimizer by explicitly taking into account the downstream expert calibrator. To accomplish this, we propose a new differentiable expert calibrator that generalizes regularized online balanced descent and offers a provably better competitive ratio than pure ML predictions when the prediction error is large. For training, our loss function is a weighted sum of two different losses --- one minimizing the average ML prediction error for better robustness, and the other one minimizing the post-calibration average cost. We also provide theoretical analysis for EC-L2O, highlighting that expert calibration can be even beneficial for the average cost performance and that the high-percentile tail ratio of the cost achieved by EC-L2O to that of the offline optimal oracle (i.e., tail cost ratio) can be bounded. Finally, we test EC-L2O by running simulations for sustainable datacenter demand response. Our results demonstrate that EC-L2O can empirically achieve a lower average cost as well as a lower competitive ratio than the existing baseline algorithms. 
    more » « less
  3. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. Although these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids and knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem are known in advance and the online setting where the input data are revealed over time. For the offline setting, we give a general (nearly) optimal bicriteria approximation algorithm that relies on new extensions of classical algorithms for submodular maximization. For the online version of the problem, we give an algorithm that returns a bicriteria solution with sublinear regret. Summary of Contribution: Constrained submodular maximization is one of the core areas in combinatorial optimization with a wide variety of applications in operations research and computer science. Over the last decades, both communities have been interested on the design and analysis of new algorithms with provable guarantees. Sensor location, influence maximization and data summarization are some of the applications of submodular optimization that lie at the intersection of the aforementioned communities. Particularly, our work focuses on optimizing several submodular functions simultaneously. We provide new insights and algorithms to the offline and online variants of the problem which significantly expand the related literature. At the same time, we provide a computational study that supports our theoretical results. 
    more » « less
  4. null (Ed.)
    We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging. 
    more » « less
  5. Constrained submodular function maximization has been used in subset selection problems such as selection of most informative sensor locations. While these models have been quite popular, the solutions obtained via this approach are unstable to perturbations in data defining the submodular functions. Robust submodular maximization has been proposed as a richer model that aims to overcome this discrepancy as well as increase the modeling scope of submodular optimization. In this work, we consider robust submodular maximization with structured combinatorial constraints and give efficient algorithms with provable guarantees. Our approach is applicable to constraints defined by single or multiple matroids, knapsack as well as distributionally robust criteria. We consider both the offline setting where the data defining the problem is known in advance as well as the online setting where the input data is revealed over time. For the offline setting, we give a nearly optimal bi-criteria approximation algorithm that relies on new extensions of the classical greedy algorithm. For the online version of the problem, we give an algorithm that returns a bi-criteria solution with sub-linear regret. 
    more » « less