skip to main content

Search for: All records

Award ID contains: 1642644

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tropical waves play an important role in driving the quasi‐biennial oscillation of zonal winds in the tropical stratosphere. In our study we analyze these waves based on temperature observations from the 2021–2022 Strateole‐2 campaign when the Reel‐down Atmospheric Temperature Sensor (RATS) was successfully deployed for the first time. RATS provides long‐duration, continuous and simultaneous high‐resolution temperature observations at two altitudes (balloon float level and 200 m below) allowing for an analysis of vertical wavelengths. This separation distance was chosen to focus on waves near the resolution limit of reanalyses. Here, we found tropical waves with periods between about 6 hr and 2 days, with vertical wavelengths between 1.5 and 5 km, respectively. Comparing our results to Fifth generation European Centre for Medium‐Range Weather Forecasts (ERA5) reanalyses we found good agreement for waves with a period longer than 1 day. However, the ERA5 amplitudes of higher‐frequency waves are under‐estimated, and the temporal evolution of most wave packets differs from the observations.

    more » « less
  2. Abstract

    Atmospheric waves in the tropical tropopause layer are recognized as a significant influence on processes that impact global climate. For example, waves drive the quasi‐biennial oscillation (QBO) in equatorial stratospheric winds and modulate occurrences of cirrus clouds. However, the QBO in the lower stratosphere and thin cirrus have continued to elude accurate simulation in state‐of‐the‐art climate models and seasonal forecast systems. We use first‐of‐their‐kind profile measurements deployed beneath a long‐duration balloon to provide new insights into impacts of fine‐scale waves on equatorial cirrus clouds and the QBO just above the tropopause. Analysis of these balloon‐borne measurements reveals previously uncharacterized fine‐vertical‐scale waves (<1 km) with large horizontal extent (>1000 km) and multiday periods. These waves affect cirrus clouds and QBO winds in ways that could explain current climate model shortcomings in representing these stratospheric influences on climate. Accurately simulating these fine‐vertical‐scale processes thus has the potential to improve sub‐seasonal to near‐term climate prediction.

    more » « less
  3. Abstract

    The quasi‐biennial oscillation (QBO), a ubiquitous feature of the zonal mean zonal winds in the equatorial lower stratosphere, is forced by selective dissipation of atmospheric waves that range in periods from days to hours. However, QBO circulations in numerical models tend to be weak compared with observations, probably because of limited vertical resolution that cannot adequately resolve gravity waves and the height range over which they dissipate. Observations are required to help quantify wave effects. The passage of a superpressure balloon (SPB) near a radiosonde launch site in the equatorial Western Pacific during the transition from the eastward to westward phase of the QBO at 20 km permits a coordinated study of the intrinsic frequencies and vertical structures of two inertia‐gravity wave packets with periods near 1 day and 3 days, respectively. Both waves have large horizontal wavelengths of about 970 and 5,500 km. The complementary nature of the observations provided information on their momentum fluxes and the evolution of the waves in the vertical. The near 1 day westward propagating wave has a critical level near 20 km, while the eastward propagating 3‐day wave is able to propagate through to heights near 30 km before dissipation. Estimates of the forcing provided by the momentum flux convergence, taking into account the duration and scale of the forcing, suggests zonal force of about 0.3–0.4 m s−1 day−1for the 1‐day wave and about 0.4–0.6 m s−1 day−1for the 3‐day wave, which acts for several days.

    more » « less
  4. Abstract. A novel fiber-optic distributed temperature sensing instrument, the Fiber-optic Laser Operated Atmospheric Temperature Sensor (FLOATS), was developed for continuous in situ profiling of the atmosphere up to 2 km below constant-altitude scientific balloons. The temperature-sensingsystem uses a suspended fiber-optic cable and temperature-dependent scattering of pulsed laser light in the Raman regime to retrieve continuous3 m vertical-resolution profiles at a minimum sampling period of 20 s.FLOATS was designed for operation aboard drifting super-pressure balloons inthe tropical tropopause layer at altitudes around 18 km as part of theStratéole 2 campaign. A short test flight of the system was conductedfrom Laramie, Wyoming, in January 2021 to check the optical, electrical, andmechanical systems at altitude and to validate a four-reference temperaturecalibration procedure with a fiber-optic deployment length of 1170 m. During the 4 h flight aboard a vented balloon, FLOATS retrieved temperatureprofiles during ascent and while at a float altitude of about 19 km. TheFLOATS retrievals provided differences of less than 1.0 ∘Ccompared to a commercial radiosonde aboard the flight payload during ascent.At float altitude, a comparison of optical length and GPS position at thebottom of the fiber-optic revealed little to no curvature in the fiber-opticcable, suggesting that the position of any distributed temperaturemeasurement can be effectively modeled. Comparisons of the distributed temperature retrievals to the reference temperature sensors show strongagreement with root-mean-square-error values less than 0.4 ∘C. Theinstrument also demonstrated good agreement with nearby meteorologicalobservations and COSMIC-2 satellite profiles. Observations of temperatureand wind perturbations compared to the nearby radiosounding profiles provide evidence of inertial gravity wave activity during the test flight. Spectral analysis of the observed temperature perturbations shows that FLOATS is an effective and pioneering tool for the investigation of small-scale gravity waves in the upper troposphere and lower stratosphere. 
    more » « less
  5. Abstract. Current climate models have difficulty representing realistic wave–mean flow interactions, partly because the contribution from waves with fine vertical scales is poorly known. There are few direct observations of these waves, and most models have difficulty resolving them. This observational challenge cannot be addressed by satellite or sparse ground-based methods. The Strateole-2 long-duration stratospheric superpressure balloons that float with the horizontal wind on constant-density surfaces provide a unique platform for wave observations across a broad range of spatial and temporal scales. For the first time, balloon-borne Global Navigation Satellite System (GNSS) radio occultation (RO) is used to provide high-vertical-resolution equatorial wave observations. By tracking navigation signal refractive delays from GPS satellites near the horizon, 40–50 temperature profiles were retrieved daily, from balloon flight altitude (∼20 km) down to 6–8 km altitude, forming an orthogonal pattern of observations over a broad area (±400–500 km) surrounding the flight track. The refractivity profiles show an excellent agreement of better than 0.2 % with co-located radiosonde, spaceborne COSMIC-2 RO, and reanalysis products. The 200–500 m vertical resolution and the spatial and temporal continuity of sampling make it possible to extract properties of Kelvin waves and gravity waves with vertical wavelengths as short as 2–3 km. The results illustrate the difference in the Kelvin wave period (20 vs. 16 d) in the Lagrangian versus ground-fixed reference and as much as a 20 % difference in amplitude compared to COSMIC-2, both of which impact estimates of momentum flux. A small dataset from the extra Galileo, GLONASS, and BeiDou constellations demonstrates the feasibility of nearly doubling the sampling density in planned follow-on campaigns when data with full equatorial coverage will contribute to a better estimate of wave forcing on the quasi-biennial oscillation (QBO) and improved QBO representation in models. 
    more » « less
  6. In the Stratéole 2 program, set to launch in November 2018, instruments will ride balloons into the stratosphere and circle the world, observing properties of the air and winds in fine detail. 
    more » « less