- PAR ID:
- 10399824
- Date Published:
- Journal Name:
- Atmospheric Measurement Techniques
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1867-8548
- Page Range / eLocation ID:
- 791 to 807
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. Current climate models have difficulty representing realistic wave–mean flow interactions, partly because the contribution from waves with fine vertical scales is poorly known. There are few direct observations of these waves, and most models have difficulty resolving them. This observational challenge cannot be addressed by satellite or sparse ground-based methods. The Strateole-2 long-duration stratospheric superpressure balloons that float with the horizontal wind on constant-density surfaces provide a unique platform for wave observations across a broad range of spatial and temporal scales. For the first time, balloon-borne Global Navigation Satellite System (GNSS) radio occultation (RO) is used to provide high-vertical-resolution equatorial wave observations. By tracking navigation signal refractive delays from GPS satellites near the horizon, 40–50 temperature profiles were retrieved daily, from balloon flight altitude (∼20 km) down to 6–8 km altitude, forming an orthogonal pattern of observations over a broad area (±400–500 km) surrounding the flight track. The refractivity profiles show an excellent agreement of better than 0.2 % with co-located radiosonde, spaceborne COSMIC-2 RO, and reanalysis products. The 200–500 m vertical resolution and the spatial and temporal continuity of sampling make it possible to extract properties of Kelvin waves and gravity waves with vertical wavelengths as short as 2–3 km. The results illustrate the difference in the Kelvin wave period (20 vs. 16 d) in the Lagrangian versus ground-fixed reference and as much as a 20 % difference in amplitude compared to COSMIC-2, both of which impact estimates of momentum flux. A small dataset from the extra Galileo, GLONASS, and BeiDou constellations demonstrates the feasibility of nearly doubling the sampling density in planned follow-on campaigns when data with full equatorial coverage will contribute to a better estimate of wave forcing on the quasi-biennial oscillation (QBO) and improved QBO representation in models.more » « less
-
Abstract Argo‐type profiling floats do not receive satellite positioning while under sea ice. Common practice is to approximate unknown positions by linearly interpolating latitude‐longitude between known positions before and after ice cover, although it has been suggested that some improvement may be obtained by interpolating along contours of planetary‐geostrophic potential vorticity. Profiles with linearly interpolated positions represent 16% of the Southern Ocean Argo data set; consequences arising from this approximation have not been quantified. Using three distinct data sets from the Weddell Gyre—10‐day satellite‐tracked Argo floats, daily‐tracked RAFOS‐enabled floats, and a particle release simulation in the Southern Ocean State Estimate—we perform a data withholding experiment to assess position uncertainty in latitude‐longitude and potential vorticity coordinates as a function of time since last fix. A spatial correlation analysis using the float data provides temperature and salinity uncertainty estimates as a function of distance error. Combining the spatial correlation scales and the position uncertainty, we estimate uncertainty in temperature and salinity as a function of duration of position loss. Maximum position uncertainty for interpolation during 8 months without position data is 116 ± 148 km for latitude‐longitude and 92 ± 121 km for potential vorticity coordinates. The estimated maximum uncertainty in local temperature and salinity over the entire 2,000‐m profiles during 8 months without position data is 0.66 ∘C and 0.15 psu in the upper 300 m and 0.16 ∘C and 0.01 psu below 300 m.
-
Abstract The Polar Mesospheric Cloud Turbulence (PMC Turbo) experiment was designed to observe and quantify the dynamics of small‐scale gravity waves (GWs) and instabilities leading to turbulence in the upper mesosphere during polar summer using instruments aboard a stratospheric balloon. The PMC Turbo scientific payload comprised seven high‐resolution cameras and a Rayleigh lidar. Overlapping wide and narrow camera field of views from the balloon altitude of ~38 km enabled resolution of features extending from ~20 m to ~100 km at the PMC layer altitude of ~82 km. The Rayleigh lidar provided profiles of temperature below the PMC altitudes and of the PMCs throughout the flight. PMCs were imaged during an ~5.9‐day flight from Esrange, Sweden, to Northern Canada in July 2018. These data reveal sensitivity of the PMCs and the dynamics driving their structure and variability to tropospheric weather and larger‐scale GWs and tides at the PMC altitudes. Initial results reveal strong modulation of PMC presence and brightness by larger‐scale waves, significant variability in the occurrence of GWs and instability dynamics on time scales of hours, and a diversity of small‐scale dynamics leading to instabilities and turbulence at smaller scales. At multiple times, the overall field of view was dominated by extensive and nearly continuous GWs and instabilities at horizontal scales from ~2 to 100 km, suggesting sustained turbulence generation and persistence. At other times, GWs were less pronounced and instabilities were localized and/or weaker, but not absent. An overview of the PMC Turbo experiment motivations, scientific goals, and initial results is presented here.
-
Abstract We present retrievals of infrared spectral surface emissivities spanning the far infrared and mid‐infrared from aircraft observations over Greenland, taken at an altitude of 9.2 km above sea level. We describe the flight campaign, available measurements, and the retrieval method. The principal barriers to reducing uncertainty in the emissivity retrievals are found to be instrumental noise and our ability to simultaneously retrieve the underlying surface temperature. However, our results indicate that using the instrumentation available to us it is possible to retrieve emissivities from altitude with an uncertainty of ~0.02 or better across much of the infrared. They confirm that the far‐infrared emissivity of snow and ice surfaces can depart substantially from unity, reaching values as low as 0.9 between 400 and 450 cm−1. They also show good consistency with retrievals from the same flight made from near‐surface observations giving confidence in the methodology used and the results obtained for this more challenging viewing configuration. To the best of our knowledge, this is the first time that far‐infrared surface emissivity has been retrieved from altitude and demonstrates that the methodology has the potential to be extended to planned satellite far‐infrared missions.
-
null (Ed.)Abstract The 2020 Rose Parade in Pasadena, California, was recorded by the Pasadena distributed acoustic sensing array, which utilizes the underground telecom fiber optic cables as sensors. The floats and bands generate remarkable broadband seismic signatures that can be captured at meters’ resolution.more » « less