skip to main content


Title: A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons
Abstract. A novel fiber-optic distributed temperature sensing instrument, the Fiber-optic Laser Operated Atmospheric Temperature Sensor (FLOATS), was developed for continuous in situ profiling of the atmosphere up to 2 km below constant-altitude scientific balloons. The temperature-sensingsystem uses a suspended fiber-optic cable and temperature-dependent scattering of pulsed laser light in the Raman regime to retrieve continuous3 m vertical-resolution profiles at a minimum sampling period of 20 s.FLOATS was designed for operation aboard drifting super-pressure balloons inthe tropical tropopause layer at altitudes around 18 km as part of theStratéole 2 campaign. A short test flight of the system was conductedfrom Laramie, Wyoming, in January 2021 to check the optical, electrical, andmechanical systems at altitude and to validate a four-reference temperaturecalibration procedure with a fiber-optic deployment length of 1170 m. During the 4 h flight aboard a vented balloon, FLOATS retrieved temperatureprofiles during ascent and while at a float altitude of about 19 km. TheFLOATS retrievals provided differences of less than 1.0 ∘Ccompared to a commercial radiosonde aboard the flight payload during ascent.At float altitude, a comparison of optical length and GPS position at thebottom of the fiber-optic revealed little to no curvature in the fiber-opticcable, suggesting that the position of any distributed temperaturemeasurement can be effectively modeled. Comparisons of the distributed temperature retrievals to the reference temperature sensors show strongagreement with root-mean-square-error values less than 0.4 ∘C. Theinstrument also demonstrated good agreement with nearby meteorologicalobservations and COSMIC-2 satellite profiles. Observations of temperatureand wind perturbations compared to the nearby radiosounding profiles provide evidence of inertial gravity wave activity during the test flight. Spectral analysis of the observed temperature perturbations shows that FLOATS is an effective and pioneering tool for the investigation of small-scale gravity waves in the upper troposphere and lower stratosphere.  more » « less
Award ID(s):
1642644 1642246
NSF-PAR ID:
10399824
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
16
Issue:
3
ISSN:
1867-8548
Page Range / eLocation ID:
791 to 807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Current climate models have difficulty representing realistic wave–mean flow interactions, partly because the contribution from waves with fine vertical scales is poorly known. There are few direct observations of these waves, and most models have difficulty resolving them. This observational challenge cannot be addressed by satellite or sparse ground-based methods. The Strateole-2 long-duration stratospheric superpressure balloons that float with the horizontal wind on constant-density surfaces provide a unique platform for wave observations across a broad range of spatial and temporal scales. For the first time, balloon-borne Global Navigation Satellite System (GNSS) radio occultation (RO) is used to provide high-vertical-resolution equatorial wave observations. By tracking navigation signal refractive delays from GPS satellites near the horizon, 40–50 temperature profiles were retrieved daily, from balloon flight altitude (∼20 km) down to 6–8 km altitude, forming an orthogonal pattern of observations over a broad area (±400–500 km) surrounding the flight track. The refractivity profiles show an excellent agreement of better than 0.2 % with co-located radiosonde, spaceborne COSMIC-2 RO, and reanalysis products. The 200–500 m vertical resolution and the spatial and temporal continuity of sampling make it possible to extract properties of Kelvin waves and gravity waves with vertical wavelengths as short as 2–3 km. The results illustrate the difference in the Kelvin wave period (20 vs. 16 d) in the Lagrangian versus ground-fixed reference and as much as a 20 % difference in amplitude compared to COSMIC-2, both of which impact estimates of momentum flux. A small dataset from the extra Galileo, GLONASS, and BeiDou constellations demonstrates the feasibility of nearly doubling the sampling density in planned follow-on campaigns when data with full equatorial coverage will contribute to a better estimate of wave forcing on the quasi-biennial oscillation (QBO) and improved QBO representation in models. 
    more » « less
  2. Abstract

    The Polar Mesospheric Cloud Turbulence (PMC Turbo) experiment was designed to observe and quantify the dynamics of small‐scale gravity waves (GWs) and instabilities leading to turbulence in the upper mesosphere during polar summer using instruments aboard a stratospheric balloon. The PMC Turbo scientific payload comprised seven high‐resolution cameras and a Rayleigh lidar. Overlapping wide and narrow camera field of views from the balloon altitude of ~38 km enabled resolution of features extending from ~20 m to ~100 km at the PMC layer altitude of ~82 km. The Rayleigh lidar provided profiles of temperature below the PMC altitudes and of the PMCs throughout the flight. PMCs were imaged during an ~5.9‐day flight from Esrange, Sweden, to Northern Canada in July 2018. These data reveal sensitivity of the PMCs and the dynamics driving their structure and variability to tropospheric weather and larger‐scale GWs and tides at the PMC altitudes. Initial results reveal strong modulation of PMC presence and brightness by larger‐scale waves, significant variability in the occurrence of GWs and instability dynamics on time scales of hours, and a diversity of small‐scale dynamics leading to instabilities and turbulence at smaller scales. At multiple times, the overall field of view was dominated by extensive and nearly continuous GWs and instabilities at horizontal scales from ~2 to 100 km, suggesting sustained turbulence generation and persistence. At other times, GWs were less pronounced and instabilities were localized and/or weaker, but not absent. An overview of the PMC Turbo experiment motivations, scientific goals, and initial results is presented here.

     
    more » « less
  3. Abstract

    Argo‐type profiling floats do not receive satellite positioning while under sea ice. Common practice is to approximate unknown positions by linearly interpolating latitude‐longitude between known positions before and after ice cover, although it has been suggested that some improvement may be obtained by interpolating along contours of planetary‐geostrophic potential vorticity. Profiles with linearly interpolated positions represent 16% of the Southern Ocean Argo data set; consequences arising from this approximation have not been quantified. Using three distinct data sets from the Weddell Gyre—10‐day satellite‐tracked Argo floats, daily‐tracked RAFOS‐enabled floats, and a particle release simulation in the Southern Ocean State Estimate—we perform a data withholding experiment to assess position uncertainty in latitude‐longitude and potential vorticity coordinates as a function of time since last fix. A spatial correlation analysis using the float data provides temperature and salinity uncertainty estimates as a function of distance error. Combining the spatial correlation scales and the position uncertainty, we estimate uncertainty in temperature and salinity as a function of duration of position loss. Maximum position uncertainty for interpolation during 8 months without position data is 116 ± 148 km for latitude‐longitude and 92 ± 121 km for potential vorticity coordinates. The estimated maximum uncertainty in local temperature and salinity over the entire 2,000‐m profiles during 8 months without position data is 0.66 C and 0.15 psu in the upper 300 m and 0.16 C and 0.01 psu below 300 m.

     
    more » « less
  4. Abstract. A tethered-balloon system (TBS) has been developed and is beingoperated by Sandia National Laboratories (SNL) on behalf of the U.S.Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) UserFacility in order to collect in situ atmospheric measurements withinmixed-phase Arctic clouds. Periodic tethered-balloon flights have beenconducted since 2015 within restricted airspace at ARM's Advanced MobileFacility 3 (AMF3) in Oliktok Point, Alaska, as part of the AALCO (AerialAssessment of Liquid in Clouds at Oliktok), ERASMUS (Evaluation of RoutineAtmospheric Sounding Measurements using Unmanned Systems), and POPEYE(Profiling at Oliktok Point to Enhance YOPP Experiments) field campaigns. Thetethered-balloon system uses helium-filled 34 m3 helikites and 79 and104 m3 aerostats to suspend instrumentation that is used to measureaerosol particle size distributions, temperature, horizontal wind, pressure,relative humidity, turbulence, and cloud particle properties and tocalibrate ground-based remote sensing instruments. Supercooled liquid water content (SLWC) sondes using the vibrating-wireprinciple, developed by Anasphere Inc., were operated at Oliktok Point atmultiple altitudes on the TBS within mixed-phase clouds for over 200 h.Sonde-collected SLWC data were compared with liquid water content derivedfrom a microwave radiometer, Ka-band ARM zenith radar, and ceilometer at the AMF3, as well as liquid water content derived from AMF3 radiosonde flights. The in situ data collected by the Anasphere sensors were also compared with data collected simultaneously by an alternative SLWC sensor developed at the University of Reading, UK; both vibrating-wire instruments were typically observed to shed their ice quickly upon exiting the cloud or reaching maximum ice loading. Temperature sensing measurements distributed with fiber optic tethered balloons were also compared with AMF3 radiosonde temperature measurements. Combined, the results indicate that TBS-distributedtemperature sensing and supercooled liquid water measurements are inreasonably good agreement with remote sensing and radiosonde-basedmeasurements of both properties. From these measurements and sensorevaluations, tethered-balloon flights are shown to offer an effective methodof collecting data to inform and constrain numerical models, calibrate andvalidate remote sensing instruments, and characterize the flight environmentof unmanned aircraft, circumventing the difficulties of in-cloud unmanned aircraft flights such as limited flight time and in-flight icing. 
    more » « less
  5. null (Ed.)
    The measurement of sea ice elevation above sea level or the “freeboard” depends upon an accurate retrieval of the local sea level. The local sea level has been previously retrieved from altimetry data alone by the lowest elevation method, where the percentage of the lowest elevations over a particular segment length scale was used. Here, we provide an evaluation of the scale dependence on these local sea level retrievals using data from NASA Operation IceBridge (OIB) which took place in the Ross Sea in 2013. This is a unique dataset of laser altimeter measurements over five tracks from the Airborne Topographic Mapper (ATM), with coincidently high-spatial resolution images from the Digital Mapping System (DMS), that allows for an independent sea level validation. The local sea level is first calculated by using the mean elevation of ATM L1B data over leads identified by using the corresponding DMS imagery. The resulting local sea level reference is then used as ground truth to validate the local sea levels retrieved from ATM L2 by using nine different percentages of the lowest elevation (0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, and 4%) at seven different segment length scales (1, 5, 10, 15, 20, 25, and 50 km) for each of the five ATM tracks. The closeness to the 1:1 line, R2, and root mean square error (RMSE) is used to quantify the accuracy of the retrievals. It is found that all linear least square fits are statistically significant (p < 0.05) using an F test at every scale for all tested data. In general, the sea level retrievals are farther away from the 1:1 line when the segment length scale increases from 1 or 5 to 50 km. We find that the retrieval accuracy is affected more by the segment length scale than the percentage scale. Based on our results, most retrievals underestimate the local sea level; the longer the segment length (from 1 to 50 km) used, especially at small percentage scales, the larger the error tends to be. The best local sea level based on a higher R2 and smaller RMSE for all the tracks combined is retrieved by using 0.1–2% of the lowest elevations at the 1–5 km segment lengths. 
    more » « less