skip to main content


Search for: All records

Award ID contains: 1646470

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hand hygiene is crucial in preventing the spread of infections and diseases. Lack of hand hygiene is one of the major reasons for healthcare associated infections (HAIs) in hospitals. Adherence to hand hygiene compliance by the workers in the food business is very important for preventing food-borne illness. In addition to healthcare settings and food businesses, hand washing is also vital for personal well-being. Despite the importance of hand hygiene, people often do not wash hands when necessary. Automatic detection of hand washing activity can facilitate justin-time alerts when a person forgets to wash hands. Monitoring hand washing practices is also essential in ensuring accountability and providing personalized feedback, particularly in hospitals and food businesses. Inertial sensors available in smart wrist devices can capture hand movements, and so it is feasible to detect hand washing using these devices. However, it is challenging to detect hand washing using wrist wearable sensors since hand movements are associated with a wide range of activities. In this paper, we present HAWAD, a robust solution for hand washing detection using wrist wearable inertial sensors. We leverage the distribution of penultimate layer output of a neural network to detect hand washing from a wide range of activities. Our method reduces false positives by 77% and improves F1-score by 30% compared to the baseline method. 
    more » « less
  2. Stress increases the risk of several mental and physical health problems like anxiety, hypertension, and cardiovascular diseases. Better guidance and interventions towards mitigating the impact of stress can be provided if stress can be monitored continuously. The recent proliferation of wearable devices and their capability in measuring several physiological signals related to stress have created the opportunity to measure stress continuously in the wild. Wearable devices used to measure physiological signals are mostly placed on the wrist and the chest. Though currently chest sensors, with/without wrist sensors, provide better results in detecting stress than using wrist sensors only, chest devices are not as convenient and prevalent as wrist devices, particularly in the free-living context. In this paper, we present a solution to detect stress using wrist sensors that emulate the gold standard chest sensors. Data from wrist sensors are translated into the data from chest sensors, and the translated data is used for stress detection without requiring the users to wear any device on the chest. We evaluated our solution using a public dataset, and results show that our solution detects stress with accuracy comparable to the gold standard chest devices which are impractical for daily use 
    more » « less