skip to main content


Search for: All records

Award ID contains: 1650544

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opens up a hitherto unexplored area of research for manipulating the plasma–solid interactions.

     
    more » « less
  2. A model DC material based on ethylene propylene rubber (EPR) including the pure EPR and the EPR-based nanodielectrics incorporated with two different nanoclays, Kaoline and Talc, under operational conditions was investigated. The operational conditions include a 20 kV/mm electric field at 25 °C, a 20 kV/mm electric field at 50 °C with a thermal gradient, and a 40 kV/mm electric field at 50 °C with a thermal gradient and polarity reversal. Space charge distribution, surface potential, and electrical conductivity were measured to characterize the model DC material and interpret the discrete charge dynamics in the bulk and at the interface of the three samples. The experimental results revealed that the electrical conductivity of Talc-filled nanodielectric has the least dependency on electric field and temperature, which reduces the conductivity gradient across the dielectric. Moreover, the successful suppression of space charge and the lower dielectric time constant in the Talc-filled nanodielectric result in a tuning electric field in the bulk not only under normal operating conditions but also more importantly under polarity reversal conditions. The maximum of absolute charge density decreases from 10.6 C/m 3 for EPR to 2.9 C/m 3 for the Talc-filled nanodielectric under 40 kV/mm with polarity reversal and at 50 °C with the thermal gradient. The maximum of local electric field enhancement for the mentioned condition reduces significantly from 97 kV/mm, 142% enhancement, for EPR to 45 kV/mm, only 12.5% enhancement, for the Talc-filled nanodielectric. 
    more » « less
  3. Polymer dielectrics have been widely used in electrical and electronic systems for capacitive energy storage and electrical insulation. However, emerging applications such as electric vehicles and hybrid electric aircraft demand improved polymer dielectrics for operation not only under high electric fields and high temperatures, but also extreme conditions, for example, low pressures at high altitudes, with largely increased likelihood of electrical partial discharges. To meet these stringent requirements of grand electrifications for payload efficiency, polymers with enhanced discharge resistance are highly desired. Here, we present a surface-engineering approach for Kapton® coated with self-assembled two-dimensional montmorillonite nanosheets. By suppressing the magnitude of the high-field partial discharges, this nanocoating endows polymers with improved discharge resistance, with satisfactory discharge endurance life of 200 hours at a high electric field of 46 kV mm −1 while maintaining the surface morphology of the polymer. Moreover, the MMT nanocoating can also improve the thermal stability of Kapton®, with significantly suppressed temperature coefficients for both the dielectric constant and dielectric loss over a wide temperature range from 25 to 205 °C. This work provides a practical method of surface nanocoating to explore high-discharge-resistant polymers for harsh condition electrification. 
    more » « less