skip to main content


Search for: All records

Award ID contains: 1651273

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this paper presents terahertz (THz) channel propagation characterization and generalized channel model for a desktop environment. Path loss and power delay profiles (PDPs) measured on the motherboard in both free space and desktop‐like metal cavity are compared. To characterize the large scale fading of the channel, a mean path loss model as a function of antenna height is proposed by treating the motherboard desktop environment as a partially dielectric filled resonant cavity. The measured and modeled mean path loss achieve 98.5% R‐squared goodness of fit. For the shadowing, a Gamma‐mixture model is applied to characterize the oscillations of in‐cavity measured path loss. Results show that with proper choice of the number of mixed Gamma distributionsk, the goodness of fit between the model and the probability density function (PDF) can be greater than 97%. Multipath components are characterized by cluster‐based channel modeling. Modifications were made on the conventional Saleh‐Valenzuela (S‐V) model to accurately characterize the channel by rewriting the cluster power decay with step‐wise functions and each sub‐function is expressed exponentially in dB, and the ray power decay with power law approach. It is shown that measured and simulated multipath components match well with each other with at least 98.2% goodness of fit.

     
    more » « less
  2. Free, publicly-accessible full text available July 15, 2024
  3. null (Ed.)