Abstract—This letter provides a comparison of indoor radio propagation measurements and corresponding channel statistics at 28, 73, and 140 GHz, based on extensive measurements from 2014-2020 in an indoor office environment. Side-by-side comparisons of propagation characteristics (e.g., large-scale path loss and multipath time dispersion) across a wide range of frequencies from the low millimeter wave band of 28 GHz to the sub-THz band of 140 GHz illustrate the key similarities and differences in indoor wireless channels. The measurements and models show remarkably similar path loss exponents over frequencies in both line-of-sight (LOS) and non-LOS (NLOS) scenarios, when using a one meter free space reference distance, while the multipath time dispersion becomes smaller at higher frequencies. The 3GPP indoor channel model overestimates the large-scale path loss and has unrealistic large numbers of clusters and multipath components per cluster compared to the measured channel statistics in this letter. Index Terms—mmWave, THz, channel models, multipath time dispersion, 5G, 6G, large-scale path loss, 3GPP InH.
more »
« less
Generalized Modeling and Propagation Characterization of THz Wireless Links in Computer Desktop Environment
Abstract In this paper presents terahertz (THz) channel propagation characterization and generalized channel model for a desktop environment. Path loss and power delay profiles (PDPs) measured on the motherboard in both free space and desktop‐like metal cavity are compared. To characterize the large scale fading of the channel, a mean path loss model as a function of antenna height is proposed by treating the motherboard desktop environment as a partially dielectric filled resonant cavity. The measured and modeled mean path loss achieve 98.5% R‐squared goodness of fit. For the shadowing, a Gamma‐mixture model is applied to characterize the oscillations of in‐cavity measured path loss. Results show that with proper choice of the number of mixed Gamma distributionsk, the goodness of fit between the model and the probability density function (PDF) can be greater than 97%. Multipath components are characterized by cluster‐based channel modeling. Modifications were made on the conventional Saleh‐Valenzuela (S‐V) model to accurately characterize the channel by rewriting the cluster power decay with step‐wise functions and each sub‐function is expressed exponentially in dB, and the ray power decay with power law approach. It is shown that measured and simulated multipath components match well with each other with at least 98.2% goodness of fit.
more »
« less
- Award ID(s):
- 1651273
- PAR ID:
- 10366648
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Radio Science
- Volume:
- 57
- Issue:
- 4
- ISSN:
- 0048-6604
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Application of massive multiple-input multipleoutput (MIMO) systems to frequency division duplex (FDD) is challenging mainly due to the considerable overhead required for downlink training and feedback. Channel extrapolation, i.e., estimating the channel response at the downlink frequency band based on measurements in the disjoint uplink band, is a promising solution to overcome this bottleneck. This paper presents measurement campaigns obtained by using a wideband (350 MHz) channel sounder at 3.5 GHz composed of a calibrated 64 element antenna array, in both an anechoic chamber and outdoor environment. The Space Alternating Generalized Expectation-Maximization (SAGE) algorithm was used to extract the parameters (amplitude, delay, and angular information) of the multipath components from the attained channel data within the “training” (uplink) band. The channel in the downlink band is then reconstructed based on these path parameters. The performance of the extrapolated channel is evaluated in terms of mean squared error (MSE) and reduction of beamforming gain (RBG) in comparison to the “ground truth”, i.e., the measured channel at the downlink frequency. We find strong sensitivity to calibration errors and model mismatch, and also find that performance depends on propagation conditions: LOS performs significantly better than NLOS.more » « less
-
Abstract—Millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies are expected to play a vital role in 6G wireless systems and beyond due to the vast available bandwidth of many tens of GHz. This paper presents an indoor 3-D spatial statistical channel model for mmWave and sub-THz frequencies based on extensive radio propagation measurements at 28 and 140 GHz conducted in an indoor office environment from 2014 to 2020. Omnidirectional and directional path loss models and channel statistics such as the number of time clusters, cluster delays, and cluster powers were derived from over 15,000 measured power delay profiles. The resulting channel statistics show that the number of time clusters follows a Poisson distribution and the number of subpaths within each cluster follows a composite exponential distribution for both LOS and NLOS environments at 28 and 140 GHz. This paper proposes a unified indoor statistical channel model for mmWave and sub-Terahertz frequencies following the mathematical framework of the previous outdoor NYUSIM channel models. A corresponding indoor channel simulator is developed, which can recreate 3-D omnidirectional, directional, and multiple input multiple output (MIMO) channels for arbitrary mmWave and sub-THz carrier frequency up to 150 GHz, signal bandwidth, and antenna beamwidth. The presented statistical channel model and simulator will guide future air-interface, beamforming, and transceiver designs for 6G and beyond. Index Terms—Millimeter-wave, terahertz, radio propagation, indoor office scenario, channel measurement, channel modeling, channel simulation, NYUSIM, 28 GHz, 140 GHz, 142 GHz, 5G, 6G.more » « less
-
The paper deals with an analysis of multipath propagation environment in the 60 GHz band using a pseudo-random binary sequence-based time-domain channel sounder with 8 GHz bandwidth. The main goal of this work is to analyze the multipath components (MPCs) propagation between a moving car carrying a transmitter with an omnidirectional antenna and a fixed receiver situated in a building equipped with a manually steered directional horn antenna. The paper briefly presents the time dependence of the dominant MPC magnitudes, shows the effect of the surrounding vegetation on the RMS delay spread and signal attenuation, and statistically evaluates the reflective properties of the road which creates the dominant reflected component. To understand how the MPCs propagate through the channel we measured and analyzed the power and the RMS delay spread distributions in the static environment surrounding the car using an automated measuring system with a controlled receiver antenna tracking system. We give some examples of how the MPC magnitudes change during the antenna tracking and demonstrate that a building and a few cars parked close to the measuring car create a lot of MPCs detectable by the setup with a dynamic range of about 50 dB.more » « less
-
The geometry-based stochastic channel models (GSCM), which can describe realistic channel impulse responses, often rely on the existence of both local and far scatterers. However, their visibility from both the base station (BS) and mobile station (MS) depends on their relative heights and positions. For example, the condition of visibility of a scatterer from the perspective of a BS is different from that of an MS and depends on the height of the scatterer. To capture this, we propose a novel GSCM where each scatterer has dual disk visibility regions (VRs) centered on itself for both BS and MS, with their radii being our model parameters. Our model consists of short and tall scatterers, which are both modeled using independent inhomogeneous Poisson point processes (IPPPs) having distinct dual VRs. We also introduce a probability parameter to account for the varying visibility of tall scatterers from different MSs, effectively emulating their noncontiguous VRs. Using stochastic geometry, we derive the probability mass function (PMF) of the number of multipath components (MPCs), the marginal and joint distance distributions for an active scatterer, the mean time of arrival (ToA), and the mean received power through non-line-of-sight (NLoS) paths for our proposed model. By selecting appropriate model parameters, the propagation characteristics of our GSCM are demonstrated to closely emulate those of the COST-259 model.more » « less
An official website of the United States government
