skip to main content


Search for: All records

Award ID contains: 1651428

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The work presented here introduces a new data set for inclusion of energetic electron precipitation (EEP) in climate model simulations. Measurements made by the medium energy proton and electron detector (MEPED) instruments onboard both the Polar Orbiting Environmental Satellites and the European Space Agency Meteorological Operational satellites are used to create global maps of precipitating electron fluxes. Unlike most previous data sets, the electron fluxes are computed using both the 0° and 90° MEPED detectors. Conversion of observed, broadband electron count rates to differential spectral fluxes uses a linear combination of analytical functions instead of a single function. Two dimensional maps of electron spectral flux are created using Delaunay triangulation to account for the relatively sparse nature of the MEPED sampling. This improves on previous studies that use a 1D interpolation over magnetic local time or L‐shell zonal averaging of the MEPED data. A Whole Atmosphere Community Climate Model (WACCM) simulation of the southern hemisphere 2003 winter using the new precipitating electron data set is shown to agree more closely with observations of odd nitrogen than WACCM simulations using other MEPED‐based electron data sets. Simulated EEP‐induced odd nitrogen increases led to ozone losses of more than 15% in the polar stratosphere near 10 hPa in September of 2003.

     
    more » « less
  2. Abstract

    The atmospheric effects of precipitating electrons are not fully understood, and uncertainties are large for electrons with energies greater than ~30 keV. These electrons are underrepresented in modeling studies today, primarily because valid measurements of their precipitating spectral energy fluxes are lacking. This paper compares simulations from the Whole Atmosphere Community Climate Model (WACCM) that incorporated two different estimates of precipitating electron fluxes for electrons with energies greater than 30 keV. The estimates are both based on data from the Polar Orbiting Environmental Satellite Medium Energy Proton and Electron Detector (MEPED) instruments but differ in several significant ways. Most importantly, only one of the estimates includes both the 0° and 90° telescopes from the MEPED instrument. Comparisons are presented between the WACCM results and satellite observations poleward of 30°S during the austral winter of 2003, a period of significant energetic electron precipitation. Both of the model simulations forced with precipitating electrons with energies >30 keV match the observed descent of reactive odd nitrogen better than a baseline simulation that included auroral electrons, but no higher energy electrons. However, the simulation that included both telescopes shows substantially better agreement with observations, particularly at midlatitudes. The results indicate that including energies >30 keV and the full range of pitch angles to calculate precipitating electron fluxes is necessary for improving simulations of the atmospheric effects of energetic electron precipitation.

     
    more » « less