skip to main content


Search for: All records

Award ID contains: 1653931

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This study investigated the reaction kinetics on the oxidative transformation of lead( ii ) minerals by free chlorine (HOCl) and free bromine (HOBr) in drinking water distribution systems. According to chemical equilibrium predictions, lead( ii ) carbonate minerals, cerussite PbCO 3(s) and hydrocerussite Pb 3 (CO 3 ) 2 (OH) 2(s) , and lead( ii ) phosphate mineral, chloropyromorphite Pb 5 (PO 4 ) 3 Cl (s) are formed in drinking water distribution systems in the absence and presence of phosphate, respectively. X-ray absorption near edge spectroscopy (XANES) data showed that at pH 7 and a 10 mM alkalinity, the majority of cerussite and hydrocerussite was oxidized to lead( iv ) mineral PbO 2(s) within 120 minutes of reaction with chlorine (3 : 1 Cl 2  : Pb( ii ) molar ratio). In contrast, very little oxidation of chloropyromorphite occurred. Under similar conditions, oxidation of lead( ii ) carbonate and phosphate minerals by HOBr exhibited a reaction kinetics that was orders of magnitude faster than by HOCl. Their end oxidation products were identified as mainly plattnerite β-PbO 2(s) and trace amounts of scrutinyite α-PbO 2(s) based on X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. A kinetic model was established based on the solid-phase experimental data. The model predicted that in real drinking water distribution systems, it takes 0.6–1.2 years to completely oxidize Pb( ii ) minerals in the surface layer of corrosion scales to PbO 2(s) by HOCl without phosphate, but only 0.1–0.2 years in the presence of bromide (Br − ) due the catalytic effects of HOBr generation. The model also predicts that the addition of phosphate will significantly inhibit Pb( ii ) mineral oxidation by HOCl, but only be modestly effective in the presence of Br − . This study provides insightful understanding on the effect of residual disinfectant on the oxidation of lead corrosion scales and strategies to prevent lead release from drinking water distribution systems. 
    more » « less
  2. Vincenzo Naddeo and Haizhou Liu present an ‘Editorial Perspective’ on coronavirus in wastewater and discuss the water research needs to combat viral outbreaks. 
    more » « less
  3. Lead( iv ) oxide PbO 2 is one dominant solid phase in lead corrosion scales of drinking water distribution systems. Understanding the colloidal dispersion of PbO 2 is important for lead control in drinking water, especially under scenarios of switching the residual disinfectant from chlorine to chloramine. This study investigated the changes in lead release and colloidal dispersion from PbO 2(s) associated with the presence of natural organic matter (NOM), the introduction of chloramine, and the addition of a phosphate corrosion inhibitor in drinking water distribution systems. Experimental data showed that when NOM was present, the surface charges of PbO 2 exhibited a prominent negative shift, leading to colloidal dispersion of Pb( iv ) particles. The presence of chloramine did not significantly change the detrimental effects of NOM on the colloidal behavior of PbO 2 . In contrast, the addition of phosphate greatly reduced colloidal lead release in the size range between 0.1 and 0.45 μm, and limited lead release with colloidal sizes less than 0.1 μm to below 15 μg L −1 , i.e. , the U.S. EPA regulatory standard. The beneficial effects of phosphate addition are mainly attributed to the suppression in colloidal dispersion of Pb( iv ) particles. Meanwhile, the presence of phosphate also limits the reductive dissolution of PbO 2 via the formation of hydroxypyromorphite Pb 5 (PO 4 ) 3 OH particles. Results from this study suggest that phosphate limits the dispersion of PbO 2(s) by NOM and prevented the release of Pb( iv ) colloids into drinking water. 
    more » « less