Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spatial and energy resolutions of state-of-the-art transmission electron microscopes (TEMs) have surpassed 50 pm and 5 meV. However, with respect to the time domain, even the fastest detectors combined with the brightest sources may only be able to reach the microsecond timescale. Thus, conventional methods are incapable of resolving myriad fundamental ultrafast ( i.e., attosecond to picosecond) atomic-scale dynamics. The successful demonstration of femtosecond (fs) laser-based (LB) ultrafast transmission electron microscopy (UEM) nearly 20 years ago provided a means to span this nearly 10-order-of-magnitude temporal gap. While nanometer-picosecond UEM studies of dynamics are now well established, ultrafast Å-scale imaging has gone largely unrealized. Further, while instrument development has rightly been an emphasis, and while new modalities and uses of pulsed-beam TEM continue to emerge, the overall chemical and materials application space has been only modestly explored to date. In this Perspectives article, we argue that these apparent shortfalls can be attributed to a simple lack of data and detail. We speculate that present work and continued growth of the field will ultimately lead to the realization that Å-scale fs dynamics can indeed be imaged with minimally modified UEM instrumentation and with repetition rates ( f rep ) below - and perhaps even well below - 1 MHz. We further argue that use of low f rep , whether for LB UEM or for chopped/bunched beams, significantly expands the accessible application space. This calls for systematically establishing modality-specific limits so that especially promising technologies can be pursued, thus ultimately facilitating broader adoption as individual instrument capabilities expand.more » « less
-
null (Ed.)Key properties of two-dimensional (2D) layered materials are highly strain tunable, arising from bond modulation and associated reconfiguration of the energy bands around the Fermi level. Approaches to locally controlling and patterning strain have included both active and passive elastic deformation via sustained loading and templating with nanostructures. Here, by float-capturing ultrathin flakes of single-crystal 2H-MoS2 on amorphous holey silicon nitride substrates, we find that highly symmetric, high-fidelity strain patterns are formed. The hexagonally arranged holes and surface topography combine to generate highly conformal flake-substrate coverage creating patterns that match optimal centroidal Voronoi tessellation in 2D Euclidean space. Using TEM imaging and diffraction, as well as AFM topographic mapping, we determine that the substrate-driven 3D geometry of the flakes over the holes consists of symmetric, out-of-plane bowl-like deformation of up to 35 nm, with in-plane, isotropic tensile strains of up to 1.8% (measured with both selected-area diffraction and AFM). Atomistic and image simulations accurately predict spontaneous formation of the strain patterns, with van der Waals forces and substrate topography as the input parameters. These results show that predictable patterns and 3D topography can be spontaneously induced in 2D materials captured on bare, holey substrates. The method also enables electron scattering studies of precisely aligned, substrate-free strained regions in transmission mode.more » « less