skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1654588

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The rheology of lavas and magmas exerts a strong control on the dynamics and hazards posed by volcanic eruptions. Magmas and lavas are complex mixtures of silicate melt, suspended crystals, and gas bubbles. To improve the understanding of the dynamics and effective rheology of magmas and lavas, we performed dam‐break flow experiments using suspensions of silicone oil, sesame seeds, and N2O bubbles. Experiments were run inside a magnetic resonance imaging (MRI) scanner to provide imaging of the flow interior. We varied the volume fraction of sesame seeds between 0 and 0.48, and of bubbles between 0 and 0.21. MRI phase‐contrast velocimetry was used to measure liquid velocity. We fit an effective viscosity to the velocity data by approximating the stress using lubrication theory and the imaged shape of the free surface. In experiments with both particles and bubbles (three‐phase suspensions), we observed shear banding in which particle‐poor regions deform with a lower effective viscosity and dominate flow propagation speed. Our observations demonstrate the importance of considering variations in phase distributions within magmatic fluids and their implications on the dynamics of volcanic eruptions.

    more » « less
  2. Abstract. Lava flows present a significant natural hazard to communities around volcanoes and are typically slow-moving (<1 to 5 cm s−1) and laminar. Recent lava flows during the 2018 eruption of Kīlauea volcano, Hawai'i, however, reached speeds as high as 11 m s−1 and were transitional to turbulent. The Kīlauea flows formed a complex network of braided channels departing from the classic rectangular channel geometry often employed by lava flow models. To investigate these extreme dynamics we develop a new lava flow model that incorporates nonlinear advection and a nonlinear expression for the fluid viscosity. The model makes use of novel discontinuous Galerkin (DG) finite-element methods and resolves complex channel geometry through the use of unstructured triangular meshes. We verify the model against an analytic test case and demonstrate convergence rates of P+1/2 for polynomials of degree 𝒫. Direct observations recorded by unoccupied aerial systems (UASs) during the Kīlauea eruption provide inlet conditions, constrain input parameters, and serve as a benchmark for model evaluation. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)