Parental religious beliefs and practices (religiosity) may have profound effects on youth, especially in neurodevelopmentally complex periods such as adolescence. In n = 5566 children (median age = 120.0 months; 52.1% females; 71.2% with religious affiliation) from the Adolescent Brain Cognitive Development study, relationships between parental religiosity and non-religious beliefs on family values (data on youth beliefs were not available), topological properties of youth resting-state brain networks, and executive function, inhibitory control, and cognitive flexibility were investigated. Lower caregiver education and family income were associated with stronger parental beliefs (p < 0.01). Strength of both belief types was correlated with lower efficiency, community structure, and robustness of frontoparietal control, temporoparietal, and dorsal attention networks (p < 0.05), and lower Matrix Reasoning scores. Stronger religious beliefs were negatively associated (directly and indirectly) with multiscale properties of salience and default-mode networks, and lower Flanker and Dimensional Card Sort scores, but positively associated with properties of the precuneus. Overall, these effects were small (Cohen’s d ~ 0.2 to ~ 0.4). Overlapping neuromodulatory and cognitive effects of parental beliefs suggest that early adolescents may perceive religious beliefs partly as context-independent rules on expected behavior. However, religious beliefs may also differentially affect cognitive flexibility, attention, and inhibitory control and their neural substrates.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Sleep is critical for cognitive health, especially during complex developmental periods such as adolescence. However, its effects on maturating brain networks that support cognitive function are only partially understood. We investigated the impact of shorter duration and reduced quality sleep, common stressors during development, on functional network properties in early adolescence—a period of significant neural maturation, using resting-state functional magnetic resonance imaging from 5566 children (median age = 120.0 months; 52.1% females) in the Adolescent Brain Cognitive Development cohort. Decreased sleep duration, increased sleep latency, frequent waking up at night, and sleep-disordered breathing symptoms were associated with lower topological efficiency, flexibility, and robustness of visual, sensorimotor, attention, fronto-parietal control, default-mode and/or limbic networks, and with aberrant changes in the thalamus, basal ganglia, hippocampus, and cerebellum (P < 0.05). These widespread effects, many of which were body mass index-independent, suggest that unhealthy sleep in early adolescence may impair neural information processing and integration across incompletely developed networks, potentially leading to deficits in their cognitive correlates, including attention, reward, emotion processing and regulation, memory, and executive control. Shorter sleep duration, frequent snoring, difficulty waking up, and daytime sleepiness had additional detrimental network effects in nonwhite participants, indicating racial disparities in the influence of sleep metrics.more » « less
-
null (Ed.)Abstract Adolescence is a period of profound but incompletely understood changes in the brain’s neural circuitry (the connectome), which is vulnerable to risk factors such as unhealthy weight, but may be protected by positive factors such as regular physical activity. In 5955 children (median age = 120 months; 50.86% females) from the Adolescent Brain Cognitive Development (ABCD) cohort, we investigated direct and indirect (through impact on body mass index [BMI]) effects of physical activity on resting-state networks, the backbone of the functional connectome that ubiquitously affects cognitive function. We estimated significant positive effects of regular physical activity on network connectivity, efficiency, robustness and stability (P ≤ 0.01), and on local topologies of attention, somatomotor, frontoparietal, limbic, and default-mode networks (P < 0.05), which support extensive processes, from memory and executive control to emotional processing. In contrast, we estimated widespread negative BMI effects in the same network properties and brain regions (P < 0.05). Additional mediation analyses suggested that physical activity could also modulate network topologies leading to better control of food intake, appetite and satiety, and ultimately lower BMI. Thus, regular physical activity may have extensive positive effects on the development of the functional connectome, and may be critical for improving the detrimental effects of unhealthy weight on cognitive health.more » « less