skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shorter Duration and Lower Quality Sleep Have Widespread Detrimental Effects on Developing Functional Brain Networks in Early Adolescence
Abstract Sleep is critical for cognitive health, especially during complex developmental periods such as adolescence. However, its effects on maturating brain networks that support cognitive function are only partially understood. We investigated the impact of shorter duration and reduced quality sleep, common stressors during development, on functional network properties in early adolescence—a period of significant neural maturation, using resting-state functional magnetic resonance imaging from 5566 children (median age = 120.0 months; 52.1% females) in the Adolescent Brain Cognitive Development cohort. Decreased sleep duration, increased sleep latency, frequent waking up at night, and sleep-disordered breathing symptoms were associated with lower topological efficiency, flexibility, and robustness of visual, sensorimotor, attention, fronto-parietal control, default-mode and/or limbic networks, and with aberrant changes in the thalamus, basal ganglia, hippocampus, and cerebellum (P < 0.05). These widespread effects, many of which were body mass index-independent, suggest that unhealthy sleep in early adolescence may impair neural information processing and integration across incompletely developed networks, potentially leading to deficits in their cognitive correlates, including attention, reward, emotion processing and regulation, memory, and executive control. Shorter sleep duration, frequent snoring, difficulty waking up, and daytime sleepiness had additional detrimental network effects in nonwhite participants, indicating racial disparities in the influence of sleep metrics.  more » « less
Award ID(s):
2116707 1940096 1649865 1658414
PAR ID:
10313378
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Cerebral Cortex Communications
Volume:
3
Issue:
1
ISSN:
2632-7376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Adolescence is a period of profound but incompletely understood changes in the brain’s neural circuitry (the connectome), which is vulnerable to risk factors such as unhealthy weight, but may be protected by positive factors such as regular physical activity. In 5955 children (median age = 120 months; 50.86% females) from the Adolescent Brain Cognitive Development (ABCD) cohort, we investigated direct and indirect (through impact on body mass index [BMI]) effects of physical activity on resting-state networks, the backbone of the functional connectome that ubiquitously affects cognitive function. We estimated significant positive effects of regular physical activity on network connectivity, efficiency, robustness and stability (P ≤ 0.01), and on local topologies of attention, somatomotor, frontoparietal, limbic, and default-mode networks (P < 0.05), which support extensive processes, from memory and executive control to emotional processing. In contrast, we estimated widespread negative BMI effects in the same network properties and brain regions (P < 0.05). Additional mediation analyses suggested that physical activity could also modulate network topologies leading to better control of food intake, appetite and satiety, and ultimately lower BMI. Thus, regular physical activity may have extensive positive effects on the development of the functional connectome, and may be critical for improving the detrimental effects of unhealthy weight on cognitive health. 
    more » « less
  2. Abstract Parental religious beliefs and practices (religiosity) may have profound effects on youth, especially in neurodevelopmentally complex periods such as adolescence. In n = 5566 children (median age = 120.0 months; 52.1% females; 71.2% with religious affiliation) from the Adolescent Brain Cognitive Development study, relationships between parental religiosity and non-religious beliefs on family values (data on youth beliefs were not available), topological properties of youth resting-state brain networks, and executive function, inhibitory control, and cognitive flexibility were investigated. Lower caregiver education and family income were associated with stronger parental beliefs (p < 0.01). Strength of both belief types was correlated with lower efficiency, community structure, and robustness of frontoparietal control, temporoparietal, and dorsal attention networks (p < 0.05), and lower Matrix Reasoning scores. Stronger religious beliefs were negatively associated (directly and indirectly) with multiscale properties of salience and default-mode networks, and lower Flanker and Dimensional Card Sort scores, but positively associated with properties of the precuneus. Overall, these effects were small (Cohen’s d ~ 0.2 to ~ 0.4). Overlapping neuromodulatory and cognitive effects of parental beliefs suggest that early adolescents may perceive religious beliefs partly as context-independent rules on expected behavior. However, religious beliefs may also differentially affect cognitive flexibility, attention, and inhibitory control and their neural substrates. 
    more » « less
  3. Abstract Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults. 
    more » « less
  4. Abstract Previous research has established important developmental changes in sleep and memory during early childhood. These changes have been linked separately to brain development, yet few studies have explored their interrelations during this developmental period. The goal of this report was to explore these associations in 200 (100 female) typically developing 4- to 8-year-old children. We examined whether habitual sleep patterns (24-h sleep duration, nap status) were related to children’s performance on a source memory task and hippocampal subfield volumes. Results revealed that, across all participants, after controlling for age, habitual sleep duration was positively related to source memory performance. In addition, in younger (4–6 years, n = 67), but not older (6–8 years, n = 70) children, habitual sleep duration was related to hippocampal head subfield volume (CA2-4/DG). Moreover, within younger children, volume of hippocampal subfields varied as a function of nap status; children who were still napping (n = 28) had larger CA1 volumes in the body compared to children who had transitioned out of napping (n = 39). Together, these findings are consistent with the hypothesis that habitually napping children may have more immature cognitive networks, as indexed by hippocampal integrity. Furthermore, these results shed additional light on why sleep is important during early childhood, a period of substantial brain development. 
    more » « less
  5. Purpose: The first year of the COVID-19 pandemic constituted a major life stress event for many adolescents, associated with disrupted school, behaviors, social networks, and health concerns. However, pandemic-related stress was not equivalent for everyone and could have been influenced by pre-pandemic factors including brain structure and sleep, which both undergo substantial development during adolescence. Here, we analyzed clusters of perceived stress levels across the pandemic and determined developmentally relevant pre-pandemic risk factors in brain structure and sleep of persistently high stress during the first year of the COVID-19 pandemic. Methods: We investigated longitudinal changes in perceived stress at six timepoints across the first year of the pandemic (May 2020–March 2021) in 5559 adolescents (50 % female; age range: 11–14 years) in the United States (U.S.) participating in the Adolescent Brain Cognitive Development (ABCD) study. In 3141 of these adolescents, we fitted machine learning models to identify the most important pre-pandemic predictors from structural MRI brain measures and self-reported sleep data that were associated with persistently high stress across the first year of the pandemic. Results: Patterns of perceived stress levels varied across the pandemic, with 5 % reporting persistently high stress. Our classifiers accurately detected persistently high stress (AUC > 0.7). Pre-pandemic brain structure, specifically cortical volume in temporal regions, and cortical thickness in multiple parietal and occipital regions, predicted persistent stress. Pre-pandemic sleep difficulties and short sleep duration were also strong predictors of persistent stress, along with more advanced pubertal stage. Conclusions: Adolescents showed variable stress responses during the first year of the COVID-19 pandemic, and some reported persistently high stress across the whole first year. Vulnerability to persistent stress was evident in several brain structural and self-reported sleep measures, collected before the pandemic, suggesting the relevance of other pre-existing individual factors beyond pandemic-related factors, for persistently high stress responses. 
    more » « less