skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1662542

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, pursuit-evasion scenarios in a stochastic flow field involving one pursuer and one evader are analyzed. Using a forward reachability set-based approach and the associated level set equations, nominal solutions of the players are generated. The dynamical system is linearized along the nominal solution to formulate a chance-constrained, linear-quadratic stochastic dynamic game. Assuming an affine disturbance feedback structure, the proposed game is solved using the standard Gauss-Seidel iterative scheme. Numerical simulations demonstrate the proposed approach for realistic flow fields. 
    more » « less
  2. null (Ed.)
  3. This paper addresses trajectory optimization for hypersonic vehicles under atmospheric and aerodynamic uncertainties using techniques from desensitized optimal control (DOC), wherein open-loop optimal controls are obtained by minimizing the sum of the standard objective function and a first-order penalty on trajectory variations due to parametric uncertainty. The proposed approach is demonstrated via numerical simulations of a minimum-final-time Earth reentry trajectory for an X-33 vehicle with an uncertain atmospheric scale height and drag coefficient. Monte Carlo simulations indicate that dispersions in the final position footprint and the final energy can be significantly reduced without closed-loop control and with little tradeoff in the performance metric set for the trajectory. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)