skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Desensitized Trajectory Optimization for Hypersonic Vehicles
This paper addresses trajectory optimization for hypersonic vehicles under atmospheric and aerodynamic uncertainties using techniques from desensitized optimal control (DOC), wherein open-loop optimal controls are obtained by minimizing the sum of the standard objective function and a first-order penalty on trajectory variations due to parametric uncertainty. The proposed approach is demonstrated via numerical simulations of a minimum-final-time Earth reentry trajectory for an X-33 vehicle with an uncertain atmospheric scale height and drag coefficient. Monte Carlo simulations indicate that dispersions in the final position footprint and the final energy can be significantly reduced without closed-loop control and with little tradeoff in the performance metric set for the trajectory.  more » « less
Award ID(s):
1662542
PAR ID:
10318547
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Aerospace Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the problem of learning the optimal control policy for a nonlinear stochastic dynam- ical. This problem is subject to the ‘curse of dimension- ality’ associated with the dynamic programming method. This paper proposes a novel decoupled data-based con- trol (D2C) algorithm that addresses this problem using a decoupled, ‘open-loop - closed-loop’, approach. First, an open-loop deterministic trajectory optimization problem is solved using a black-box simulation model of the dynamical system. Then, closed-loop control is developed around this open-loop trajectory by linearization of the dynamics about this nominal trajectory. By virtue of linearization, a linear quadratic regulator based algorithm can be used for this closed-loop control. We show that the performance of D2C algorithm is approximately optimal. Moreover, simulation performance suggests a significant reduction in training time compared to other state of the art algorithms. 
    more » « less
  2. This paper develops a control co-design (CCD) framework to simultaneously optimize the spacecraft’s trajectory and onboard system (rocket engine) and quantify its benefit. An open-loop optimal control problem (two-finite burn Mars missions) is used as the benchmark, and the engine design considers the combustion equilibrium and nozzle geometry. The objective function is the fuel burn. The design variables are the trajectory control parameters (such as burn times, burn directions, and time of flight), initial fuel mass, and engine design parameters (such as throat area, mixture ratio, and chamber pressure). The constraints include the final velocities and positions of spacecraft. Single-point optimizations are conducted for three departure dates in May, July, and September 2020. A multipoint optimization is also performed to balance the engine performance for these dates with 49 design variables and 20 constraints. It is found that the CCD optimizations exhibit 22–28% more fuel burn reduction than the trajectory-only optimization with fixed engine parameters and 16–20% more fuel burn reduction than the decoupled trajectory-engine optimization. The proposed CCD optimization framework can be extended to more spacecraft trajectory control parameters and onboard systems and has the potential to design more efficient spacecraft missions. 
    more » « less
  3. In this work, we propose a trajectory generation method for robotic systems with contact force constraint based on optimal control and reachability analysis. Normally, the dynamics and constraints of the contact-constrained robot are nonlinear and coupled to each other. Instead of linearizing the model and constraints, we directly solve the optimal control problem to obtain the feasible state trajectory and the control input of the system. A tractable optimal control problem is formulated which is addressed by dual approaches, which are sampling-based dynamic programming and rigorous reachability analysis. The sampling-based method and Partially Observable Markov Decision Process (POMDP) are used to break down the end-to-end trajectory generation problem via sample-wise optimization in terms of given conditions. The result generates sequential pairs of subregions to be passed to reach the final goal. The reachability analysis ensures that we will find at least one trajectory starting from a given initial state and going through a sequence of subregions. The distinctive contributions of our method are to enable handling the intricate contact constraint coupled with system’s dynamics due to the reduction of computational complexity of the algorithm. We validate our method using extensive numerical simulations with a legged robot. 
    more » « less
  4. A discrete time, optimal trajectory planning scheme for position trajectory generation of a vehicle is given here, considering the mission duration as a free variable. The vehicle is actuated in three rotational degrees of freedom and one translational degree of freedom. This model is applicable to vehicles that have a body-fixed thrust vector direction for translational motion control, including fixed-wing and rotorcraft unmanned aerial vehicles (UAVs), unmanned underwater vehicles (UUVs) and spacecraft. The lightweight scheme proposed here generates the trajectory in inertial coordinates, and is intended for real time, on-the-go applications. The unspecified terminal time can be considered as an additional design parameter. This is done by deriving the optimality conditions in a discrete time setting, which results in the discrete transversality condition. The trajectory starts from an initial position and reaches a desired final position in an unspecified final time that ensures the cost on state and control is optimized. The trajectory generated by this scheme can be considered as the desired trajectory for a tracking control scheme. Numerical simulation results validate the performance of this trajectory generation scheme used in conjunction with a nonlinear tracking control scheme. 
    more » « less
  5. A general problem encompassing output regulation and pattern generation can be formulated as the design of controllers to achieve convergence to a persistent trajectory within the zero dynamics on which an output vanishes. We develop an optimal control theory for such design by adding the requirement to minimize the H2 norm of a closed-loop transfer function. Within the framework of eigenstructure assignment, the optimal control is proven identical to the standard H2 control in form. However, the solution to the Riccati equation for the linear quadratic regulator is not stabilizing. Instead it partially stabilizes the closed-loop dynamics excluding the zero dynamics. The optimal control architecture is shown to have the feedback of the deviation from the subspace of the zero dynamics and the feedforward of the control input to remain in the subspace. 
    more » « less