Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Visibly transparent luminescent solar concentrators (TLSC) can optimize both power production and visible transparency by selectively harvesting the invisible portion of the solar spectrum. Since the primary applications of TLSCs include building envelopes, greenhouses, automobiles, signage, and mobile electronics, maintaining aesthetics and functionalities is as important as achieving high power conversion efficiencies (PCEs) in practical deployment. In this work, massive‐downshifting phosphorescent nanoclusters and fluorescent organic molecules are combined into a TLSC system as ultraviolet (UV) and near‐infrared (NIR) selective‐harvesting luminophores, respectively, demonstrating UV and NIR dual‐band selective‐harvesting TLSCs with PCE over 3%, average visible transmittance (AVT) exceeding 75% and color metrics suitable for the window industry. With distinct wavelength‐selectivity and effective utilization of the invisible portion of the solar spectrum, this work reports the highest light utilization efficiency (PCE × AVT) of 2.6 for a TLSC system, the highest PCE of any transparent photovoltaic (TPV) devices with AVT greater than 70%, and outperforms the practical limit for non‐wavelength‐selective TPV.more » « less
-
Abstract Light-activated theranostics offer promising opportunities for disease diagnosis, image-guided surgery, and site-specific personalized therapy. However, current fluorescent dyes are limited by low brightness, high cytotoxicity, poor tissue penetration, and unwanted side effects. To overcome these limitations, we demonstrate a platform for optoelectronic tuning, which allows independent control of the optical properties from the electronic properties of fluorescent organic salts. This is achieved through cation-anion pairing of organic salts that can modulate the frontier molecular orbital without impacting the bandgap. Optoelectronic tuning enables decoupled control over the cytotoxicity and phototoxicity of fluorescent organic salts by selective generation of mitochondrial reactive oxygen species that control cell viability. We show that through counterion pairing, organic salt nanoparticles can be tuned to be either nontoxic for enhanced imaging, or phototoxic for improved photodynamic therapy.more » « less
-
Abstract Transparent luminescent solar concentrators (TLSCs) selectively harvest ultraviolet and near‐infrared photons. Due to the absence of electrodes, busbars, and collection grids over the solar harvesting area, the device structure enables these devices to achieve the highest levels of transparency and aesthetics. Recently, COi8DFIC has been developed as a nonfullerene acceptor in organic photovoltaics with unprecedented performance. In this work, nonfullerene acceptors are introduced into TLSCs as the luminophores. The impact of COi8DFIC concentration on power conversion efficiency (PCE), aesthetic quality, and scalability is systematically studied. After device optimization, the COi8DFIC TLSCs are shown to achieve a PCE over 1.2% while the average visible transmittance exceeds 74% and color rendering index exceeds 80. This work reports the highest TLSC device efficiency at the highest visibly transparency and highlights that the photoluminescent properties of these emerging low bandgap organic molecules providing an encouraging path to higher TLSC performance.more » « less
-
Abstract Visibly transparent luminescent solar concentrators (TLSC) have the potential to turn existing infrastructures into net-zero-energy buildings. However, the reabsorption loss currently limits the device performance and scalability. This loss is typically defined by the Stokes shift between the absorption and emission spectra of luminophores. In this work, the Stokes shifts (SS) of near-infrared selective-harvesting cyanines are altered by substitution of the central methine carbon with dialkylamines. We demonstrate varyingSSwith values over 80 nm and ideal infrared-visible absorption cutoffs. The corresponding TLSC with such modification shows a power conversion efficiency (PCE) of 0.4% for a >25 cm2device area with excellent visible transparency >80% and up to 0.6% PCE over smaller areas. However, experiments and simulations show that it is not the Stokes shift that is critical, but the total degree of overlap that depends on the shape of the absorption tails. We show with a series ofSS-modulated cyanine dyes that theSSis not necessarily correlated to improvements in performance or scalability. Accordingly, we define a new parameter, the overlap integral, to sensitively correlate reabsorption losses in any LSC. In deriving this parameter, new approaches to improve the scalability and performance are discussed to fully optimize TLSC designs to enhance commercialization efforts.more » « less
-
Abstract Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye‐sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi‐junction PVs. Nevertheless, it can be very time consuming to find or develop an up‐to‐date overview of the state‐of‐the‐art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state‐of‐the‐art emerging PVs.more » « less
-
null (Ed.)We report a significant Stokes shift enhancement in near-infrared fluorescing cyanines as a result of C4′-substitution with cyclic or acyclic amines. Based on a combined experimental and density functional study, a simple strategy for optimizing the Stokes shift is proposed. By tuning the relative energies of cyanine-like and bis-dipolar conformers, differing in the rotational angle of the amine substituent, it is possible to develop molecules that undergo conformational change upon excitation, resulting in a predictable Stokes shift.more » « less
An official website of the United States government
