skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Device Performance of Emerging Photovoltaic Materials (Version 1)
Abstract Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye‐sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi‐junction PVs. Nevertheless, it can be very time consuming to find or develop an up‐to‐date overview of the state‐of‐the‐art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state‐of‐the‐art emerging PVs.  more » « less
Award ID(s):
1702591
PAR ID:
10452021
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
11
Issue:
11
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Clay nanomaterials are an emerging class of 2D biomaterials of interest due to their atomically thin layered structure, charged characteristics, and well‐defined composition. Synthetic nanoclays are plate‐like polyions composed of simple or complex salts of silicic acids with a heterogeneous charge distribution and patchy interactions. Due to their biocompatible characteristics, unique shape, high surface‐to‐volume ratio, and charge, nanoclays are investigated for various biomedical applications. Here, a critical overview of the physical, chemical, and physiological interactions of nanoclay with biological moieties, including cells, proteins, and polymers, is provided. The state‐of‐the‐art biomedical applications of 2D nanoclay in regenerative medicine, therapeutic delivery, and additive manufacturing are reviewed. In addition, recent developments that are shaping this emerging field are discussed and promising new research directions for 2D nanoclay‐based biomaterials are identified. 
    more » « less
  2. Overvoltage is one of the major issues on distribution grids with high penetration of photovoltaic (PV) generation. Overvoltage could be prevented through the control of active/reactive power of PVs. However, given the high R/X ratio of low voltage feeders, voltage control by using reactive power would not be as effective as using active power. Therefore, active power curtailment (APC) of PVs, though not desirable, becomes necessary at times to prevent the overvoltage issues. Existing literature is rich in centralized and droop-based methods for APC and/or reactive power control of PVs to prevent overvoltage issues. In this context, this paper revisits the most popular existing methods, and evaluates the performance of droop-based and centralized methods using a typical North American 240 V low voltage feeder with 24 residential homes. In this work, our key findings are: a) droop-based methods provided conservative solutions or did not eliminate the overvoltages completely, b) power flow sensitivity based droop approach led to 13% more curtailment than the centralized approaches, c) centralized approach had 40% less energy curtailed compared with standard droop while no overvoltages were observed, and d) operating PVs at non-unity power factor in centralized approach led to 5% less energy curtailment. 
    more » « less
  3. Photovoltaic solar cells have been extensively used for various applications and are considered one of the most efficient green energy sources. However, their 2D surface area solar harvesting has limitations, and there is an increasing need to explore the possibility of multiple layer solar harvest for enhanced energy density. To address this, we have developed spectral-selective transparent thin films based on porphyrin and iron oxide compounds that allow solar light to penetrate multiple layers, significantly increasing solar harvesting surface area and energy density. These thin films are designed as photovoltaic (PV) and photothermal (PT) panels that can convert photons into either electricity or thermal energy for various green energy applications, such as smart building skins and solar desalination. The advantages of this 3D solar harvesting system include enlarged solar light collecting surface area and increased energy density. The multilayer system transforms the current 2D to 3D solar harvesting, enabling efficient energy generation. This review discusses recent developments in the synthesis and characterization of PV and PT transparent thin films for solar harvesting and energy generation using multilayers. Major applications of the 3D solar harvesting system are reviewed, including thermal energy generation, multilayered DSSC PV system, and solar desalination. Some preliminary data on transparent multilayer DSSC PVs are presented. 
    more » « less
  4. Abstract The conventional computing paradigm struggles to fulfill the rapidly growing demands from emerging applications, especially those for machine intelligence because much of the power and energy is consumed by constant data transfers between logic and memory modules. A new paradigm, called “computational random-access memory (CRAM),” has emerged to address this fundamental limitation. CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory. The energy and performance benefits of CRAM for both conventional and emerging applications have been well established by prior numerical studies. However, there is a lack of experimental demonstration and study of CRAM to evaluate its computational accuracy, which is a realistic and application-critical metric for its technological feasibility and competitiveness. In this work, a CRAM array based on magnetic tunnel junctions (MTJs) is experimentally demonstrated. First, basic memory operations, as well as 2-, 3-, and 5-input logic operations, are studied. Then, a 1-bit full adder with two different designs is demonstrated. Based on the experimental results, a suite of models has been developed to characterize the accuracy of CRAM computation. Scalar addition, multiplication, and matrix multiplication, which are essential building blocks for many conventional and machine intelligence applications, are evaluated and show promising accuracy performance. With the confirmation of MTJ-based CRAM’s accuracy, there is a strong case that this technology will have a significant impact on power- and energy-demanding applications of machine intelligence. 
    more » « less
  5. Abstract Silicon photonics has evolved from lab research to commercial products in the past decade as it plays an increasingly crucial role in data communication for next‐generation data centers and high‐performance computing. Recently, programmable silicon photonics has also found new applications in quantum and classical information processing. A key component of programmable silicon photonic integrated circuits (PICs) is the phase shifter, traditionally realized via thermo‐optic or free‐carrier effects that are weak, volatile, and power hungry. A non‐volatile phase shifter can circumvent these limitations by requiring zero power to maintain the switched phases. Previously non‐volatile phase modulation is achieved via phase‐change or ferroelectric materials, but the switching energy remains high (pico to nano joules) and the speed is slow (micro to milliseconds). Here, a non‐volatile III‐V‐on‐silicon photonic phase shifter based on a HfO2memristor with sub‐pJ switching energy (≈400 fJ), representing over an order of magnitude improvement in energy efficiency compared to the state of the art, is reported. The non‐volatile phase shifter can be switched reversibly using a single 100 ns pulse and exhibits excellent endurance over 800 cycles. This technology can enable future energy‐efficient programmable PICs for data centers, optical neural networks, and quantum information processing. 
    more » « less