We introduce chroma subsampling for 3D point cloud attribute compression by proposing a novel technique to sample points irregularly placed in 3D space. While most current video compression standards use chroma subsampling, these chroma subsampling methods cannot be directly applied to 3D point clouds, given their irregularity and sparsity. In this work, we develop a framework to incorporate chroma subsampling into geometry-based point cloud encoders, such as region adaptive hierarchical transform (RAHT) and region adaptive graph Fourier transform (RAGFT). We propose different sampling patterns on a regular 3D grid to sample the points at different rates. We use a simple graph-based nearest neighbor interpolation technique to reconstruct the full resolution point cloud at the decoder end. Experimental results demonstrate that our proposed method provides significant coding gains with negligible impact on the reconstruction quality. For some sequences, we observe a bitrate reduction of 10-15% under the Bjontegaard metric. More generally, perceptual masking makes it possible to achieve larger bitrate reductions without visible changes in quality.
more »
« less
Perceptual Compression for Video Storage and Processing Systems
Compressed videos constitute 70% of Internet traffic, and video upload growth rates far outpace compute and storage improvement trends. Past work in leveraging perceptual cues like saliency, i.e., regions where viewers focus their perceptual attention, reduces compressed video size while maintaining perceptual quality, but requires significant changes to video codecs and ignores the data management of this perceptual information. In this paper, we propose Vignette, a compression technique and storage manager for perception-based video compression in the cloud. Vignette complements off-the-shelf compression software and hardware codec implementations. Vignette's compression technique uses a neural network to predict saliency information used during transcoding, and its storage manager integrates perceptual information into the video storage system. Our results demonstrate the benefit of embedding information about the human visual system into the architecture of cloud video storage systems.
more »
« less
- Award ID(s):
- 1703051
- PAR ID:
- 10256906
- Date Published:
- Journal Name:
- Proceedings of the ACM Symposium on Cloud Computing
- Page Range / eLocation ID:
- 179 to 192
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bulterman_Dick; Kankanhalli_Mohan; Muehlhaueser_Max; Persia_Fabio; Sheu_Philip; Tsai_Jeffrey (Ed.)The emergence of 360-video streaming systems has brought about new possibilities for immersive video experiences while requiring significantly higher bandwidth than traditional 2D video streaming. Viewport prediction is used to address this problem, but interesting storylines outside the viewport are ignored. To address this limitation, we present SAVG360, a novel viewport guidance system that utilizes global content information available on the server side to enhance streaming with the best saliency-captured storyline of 360-videos. The saliency analysis is performed offline on the media server with powerful GPU, and the saliency-aware guidance information is encoded and shared with clients through the Saliency-aware Guidance Descriptor. This enables the system to proactively guide users to switch between storylines of the video and allow users to follow or break guided storylines through a novel user interface. Additionally, we present a viewing mode prediction algorithms to enhance video delivery in SAVG360. Evaluation of user viewport traces in 360-videos demonstrate that SAVG360 outperforms existing tiled streaming solutions in terms of overall viewport prediction accuracy and the ability to stream high-quality 360 videos under bandwidth constraints. Furthermore, a user study highlights the advantages of our proactive guidance approach over predicting and streaming of where users look.more » « less
-
Camera-based physiological measurement enables vital signs to be captured unobtrusively without contact with the body. Remote, or imaging, photoplethysmography involves recovering peripheral blood flow from subtle variations in video pixel intensities. While the pulse signal might be easy to obtain from high quality uncompressed videos, the signal-to-noise ratio drops dramatically with video bitrate. Uncompressed videos incur large file storage and data transfer costs, making analysis, manipulation and sharing challenging. To help address these challenges, we use compression specific supervised models to mitigate the effect of temporal video compression on heart rate estimates. We perform a systematic evaluation of the performance of state-of-the-art algorithms across different levels, and formats, of compression. We demonstrate that networks trained on compressed videos consistently outperform other benchmark methods, both on stationary videos and videos with significant rigid head motions. By training on videos with the same, or higher compression factor than test videos, we achieve improvements in signal-to-noise ratio (SNR) of up to 3 dB and mean absolute error (MAE) of up to 6 beats per minute (BPM).more » « less
-
The design of the buffer manager in database management systems (DBMSs) is influenced by the performance characteristics of volatile memory (DRAM) and non-volatile storage (e.g., SSD). The key design assumptions have been that the data must be migrated to DRAM for the DBMS to operate on it and that storage is orders of magnitude slower than DRAM. But the arrival of new non-volatile memory (NVM) technologies that are nearly as fast as DRAM invalidates these previous assumptions. This paper presents techniques for managing and designing a multi-tier storage hierarchy comprising of DRAM, NVM, and SSD. Our main technical contributions are a multi-tier buffer manager and a storage system designer that leverage the characteristics of NVM. We propose a set of optimizations for maximizing the utility of data migration between different devices in the storage hierarchy. We demonstrate that these optimizations have to be tailored based on device and workload characteristics. Given this, we present a technique for adapting these optimizations to achieve a near-optimal buffer management policy for an arbitrary workload and storage hierarchy without requiring any manual tuning. We finally present a recommendation system for designing a multi-tier storage hierarchy for a target workload and system cost budget. Our results show that the NVM-aware buffer manager and storage system designer improve throughput and reduce system cost across different transaction and analytical processing workloads.more » « less
-
Valencia, Alfonso (Ed.)Abstract Motivation Nanopore sequencing provides a real-time and portable solution to genomic sequencing, enabling better assembly, structural variant discovery and modified base detection than second generation technologies. The sequencing process generates a huge amount of data in the form of raw signal contained in fast5 files, which must be compressed to enable efficient storage and transfer. Since the raw data is inherently noisy, lossy compression has potential to significantly reduce space requirements without adversely impacting performance of downstream applications. Results We explore the use of lossy compression for nanopore raw data using two state-of-the-art lossy time-series compressors, and evaluate the tradeoff between compressed size and basecalling/consensus accuracy. We test several basecallers and consensus tools on a variety of datasets at varying depths of coverage, and conclude that lossy compression can provide 35–50% further reduction in compressed size of raw data over the state-of-the-art lossless compressor with negligible impact on basecalling accuracy (≲0.2% reduction) and consensus accuracy (≲0.002% reduction). In addition, we evaluate the impact of lossy compression on methylation calling accuracy and observe that this impact is minimal for similar reductions in compressed size, although further evaluation with improved benchmark datasets is required for reaching a definite conclusion. The results suggest the possibility of using lossy compression, potentially on the nanopore sequencing device itself, to achieve significant reductions in storage and transmission costs while preserving the accuracy of downstream applications. Availabilityand implementation The code is available at https://github.com/shubhamchandak94/lossy_compression_evaluation. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
An official website of the United States government

