skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HID: Hierarchical Multiscale Representation Learning for Information Diffusion
Multiscale modeling has yielded immense success on various machine learning tasks. However, it has not been properly explored for the prominent task of information diffusion, which aims to understand how information propagates along users in online social networks. For a specific user, whether and when to adopt a piece of information propagated from another user is affected by complex interactions, and thus, is very challenging to model. Current state-of-the-art techniques invoke deep neural models with vector representations of users. In this paper, we present a Hierarchical Information Diffusion (HID) framework by integrating user representation learning and multiscale modeling. The proposed framework can be layered on top of all information diffusion techniques that leverage user representations, so as to boost the predictive power and learning efficiency of the original technique. Extensive experiments on three real-world datasets showcase the superiority of our method.  more » « less
Award ID(s):
1723869 1955404 1703883 1747778
PAR ID:
10197974
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
3385 to 3391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently, aligning users among different social networks has received significant attention. However, most of the existing studies do not consider users’ behavior information during the aligning procedure and thus still suffer from the poor learning performance. In fact, we observe that social network alignment and behavior analysis can benefit from each other. Motivated by such an observation, we propose to jointly study the social network alignment problem and user behavior analysis problem. We design a novel end-to-end framework named BANANA. In this framework, to leverage behavior analysis for social network alignment at the distribution level, we design an earth mover’s distance based alignment model to fuse users’ behavior information for more comprehensive user representations. To further leverage social network alignment for behavior analysis, in turn, we design a temporal graph neural network model to fuse behavior information in different social networks based on the alignment result. Two models above can work together in an end-to-end manner. Through extensive experiments on real-world datasets, we demonstrate that our proposed approach outperforms the state-of-the-art methods in the social network alignment task and the user behavior analysis task, respectively. 
    more » « less
  2. User representation learning is vital to capture diverse user preferences, while it is also challenging as user intents are latent and scattered among complex and different modalities of user-generated data, thus, not directly measurable. Inspired by the concept of user schema in social psychology, we take a new perspective to perform user representation learning by constructing a shared latent space to capture the dependency among different modalities of user-generated data. Both users and topics are embedded to the same space to encode users' social connections and text content, to facilitate joint modeling of different modalities, via a probabilistic generative framework. We evaluated the proposed solution on large collections of Yelp reviews and StackOverflow discussion posts, with their associated network structures. The proposed model outperformed several state-of-the-art topic modeling based user models with better predictive power in unseen documents, and state-of-the-art network embedding based user models with improved link prediction quality in unseen nodes. The learnt user representations are also proved to be useful in content recommendation, e.g., expert finding in StackOverflow. 
    more » « less
  3. null (Ed.)
    We explore predictability and control in interactive systems where controls are easy to validate. Human-in-the-loop techniques allow users to guide unsupervised algorithms by exposing and supporting interaction with underlying model representations, increasing transparency and promising fine-grained control. However, these models must balance user input and the underlying data, meaning they sometimes update slowly, poorly, or unpredictably---either by not incorporating user input as expected (adherence) or by making other unexpected changes (instability). While prior work exposes model internals and supports user feedback, less attention has been paid to users' reactions when transparent models limit control. Focusing on interactive topic models, we explore user perceptions of control using a study where 100 participants organize documents with one of three distinct topic modeling approaches. These approaches incorporate input differently, resulting in varied adherence, stability, update speeds, and model quality. Participants disliked slow updates most, followed by lack of adherence. Instability was polarizing: some participants liked it when it surfaced interesting information, while others did not. Across modeling approaches, participants differed only in whether they noticed adherence. 
    more » « less
  4. Abstract We present the design, implementation and evaluation of a system, called MATRIX, developed to protect the privacy of mobile device users from location inference and sensor side-channel attacks. MATRIX gives users control and visibility over location and sensor (e.g., Accelerometers and Gyroscopes) accesses by mobile apps. It implements a PrivoScope service that audits all location and sensor accesses by apps on the device and generates real-time notifications and graphs for visualizing these accesses; and a Synthetic Location service to enable users to provide obfuscated or synthetic location trajectories or sensor traces to apps they find useful, but do not trust with their private information. The services are designed to be extensible and easy for users, hiding all of the underlying complexity from them. MATRIX also implements a Location Provider component that generates realistic privacy-preserving synthetic identities and trajectories for users by incorporating traffic information using historical data from Google Maps Directions API, and accelerations using statistical information from user driving experiments. These mobility patterns are generated by modeling/solving user schedule using a randomized linear program and modeling/solving for user driving behavior using a quadratic program. We extensively evaluated MATRIX using user studies, popular location-driven apps and machine learning techniques, and demonstrate that it is portable to most Android devices globally, is reliable, has low-overhead, and generates synthetic trajectories that are difficult to differentiate from real mobility trajectories by an adversary. 
    more » « less
  5. Collaborative filtering (CF) is a prevalent technique utilized in recommender systems (RSs), and has been extensively deployed in various real-world applications. A recent study in CF focuses on improving the quality of representations from the perspective of alignment and uniformity on the hyperspheres for enhanced recommendation performance. It promotes alignment to increase the similarity between representations of interacting users and items, and enhances uniformity to have more uniformly distributed user and item representations within their respective hyperspheres. However, although alignment and uniformity are enforced by two different optimized objectives, respectively, they jointly constitute the supervised signals for model training. Models trained with only supervised signals in labeled data can inevitably overfit the noise introduced by label sampling variance, even with i.i.d. datasets. This overfitting to noise further compromises the model's generalizability and performance on unseen testing data. To address this issue, in this study, we aim to mitigate the effect caused by the sampling variance in labeled training data to improve representation generalizability from the perspective of alignment and uniformity. Representations with more generalized alignment and uniformity further lead to improved model performance on testing data. Specifically, we model the data as a user-item interaction bipartite graph, and apply a graph neural network (GNN) to learn the user and item representations. This graph modeling approach allows us to integrate self-supervised signals into the RS, by performing self-supervised contrastive learning on the user and item representations from the perspective of label-irrelevant alignment and uniformity. Since the representations are less dependent on label supervision, they can capture more label-irrelevant data structures and patterns, leading to more generalized alignment and uniformity. We conduct extensive experiments on three benchmark datasets to demonstrate the superiority of our framework (i.e., improved performance and faster convergence speed). Our codes: https://github.com/zyouyang/AUPlus 
    more » « less