Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Causal effect identification is one of the most prominent and well-understood problems in causal inference. Despite the generality and power of the results developed so far, there are still challenges in their applicability to practical settings, arguably due to the finitude of the samples. Simply put, there is a gap between causal effect identification and estimation. One popular setting in which sample-efficient estimators from finite samples exist is when the celebrated back-door condition holds. In this paper, we extend weighting-based methods developed for the back-door case to more general settings, and develop novel machinery for estimating causal effects using the weighting-based method as a building block. We derive graphical criteria under which causal effects can be estimated using this new machinery and demonstrate the effectiveness of the proposed method through simulation studies.more » « less
-
Generalizing causal effects from a controlled experiment to settings beyond the particular study population is arguably one of the central tasks found in empirical circles. While a proper design and careful execution of the experiment would support, under mild conditions, the validity of inferences about the population in which the experiment was conducted, two challenges make the extrapolation step to different populations somewhat involved, namely, transportability and sampling selection bias. The former is concerned with disparities in the distributions and causal mechanisms between the domain (i.e., settings, population, environment) where the experiment is conducted and where the inferences are intended; the latter with distortions in the sample’s proportions due to preferential selection of units into the study. In this paper, we investigate the assumptions and machinery necessary for using covariate adjustment to correct for the biases generated by both of these problems, and generalize experimental data to infer causal effects in a new domain. We derive complete graphical conditions to determine if a set of covariates is admissible for adjustment in this new setting. Building on the graphical characterization, we develop an efficient algorithm that enumerates all possible admissible sets with poly-time delay guarantee; this can be useful for when some variables are preferred over the others due to different costs or amenability to measurement.more » « less
-
Cause-and-effect relations are one of the most valuable types of knowledge sought after throughout the data-driven sciences since they translate into stable and generalizable explanations as well as efficient and robust decision-making capabilities. Inferring these relations from data, however, is a challenging task. Two of the most common barriers to this goal are known as confounding and selection biases. The former stems from the systematic bias introduced during the treatment assignment, while the latter comes from the systematic bias during the collection of units into the sample. In this paper, we consider the problem of identifiability of causal effects when both confounding and selection biases are simultaneously present. We first investigate the problem of identifiability when all the available data is biased. We prove that the algorithm proposed by [Bareinboim and Tian, 2015] is, in fact, complete, namely, whenever the algorithm returns a failure condition, no identifiability claim about the causal relation can be made by any other method. We then generalize this setting to when, in addition to the biased data, another piece of external data is available, without bias. It may be the case that a subset of the covariates could be measured without bias (e.g., from census). We examine the problem of identifiability when a combination of biased and unbiased data is available. We propose a new algorithm that subsumes the current state-of-the-art method based on the back-door criterion.more » « less
-
Selection and confounding biases are the two most common impediments to the applicability of causal inference methods in large-scale settings. We generalize the notion of backdoor adjustment to account for both biases and leverage external data that may be available without selection bias (e.g., data from census). We introduce the notion of adjustment pair and present complete graphical conditions for identifying causal effects by adjustment. We further design an algorithm for listing all admissible adjustment pairs in polynomial delay, which is useful for researchers interested in evaluating certain properties of some admissible pairs but not all (common properties include cost, variance, and feasibility to measure). Finally, we describe a statistical estimation procedure that can be performed once a set is known to be admissible, which entails different challenges in terms of finite samples.more » « less
-
A probabilistic query may not be estimable from observed data corrupted by missing values if the data are not missing at random (MAR). It is therefore of theoretical interest and practical importance to determine in principle whether a probabilistic query is estimable from missing data or not when the data are not MAR. We present algorithms that systematically determine whether the joint probability distribution or a target marginal distribution is estimable from observed data with missing values, assuming that the data-generation model is represented as a Bayesian network, known as m-graphs, that not only encodes the dependencies among the variables but also explicitly portrays the mechanisms responsible for the missingness process. The results significantly advance the existing work.more » « less