skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identification of Causal Effects in the Presence of Selection Bias
Cause-and-effect relations are one of the most valuable types of knowledge sought after throughout the data-driven sciences since they translate into stable and generalizable explanations as well as efficient and robust decision-making capabilities. Inferring these relations from data, however, is a challenging task. Two of the most common barriers to this goal are known as confounding and selection biases. The former stems from the systematic bias introduced during the treatment assignment, while the latter comes from the systematic bias during the collection of units into the sample. In this paper, we consider the problem of identifiability of causal effects when both confounding and selection biases are simultaneously present. We first investigate the problem of identifiability when all the available data is biased. We prove that the algorithm proposed by [Bareinboim and Tian, 2015] is, in fact, complete, namely, whenever the algorithm returns a failure condition, no identifiability claim about the causal relation can be made by any other method. We then generalize this setting to when, in addition to the biased data, another piece of external data is available, without bias. It may be the case that a subset of the covariates could be measured without bias (e.g., from census). We examine the problem of identifiability when a combination of biased and unbiased data is available. We propose a new algorithm that subsumes the current state-of-the-art method based on the back-door criterion.  more » « less
Award ID(s):
1704352
PAR ID:
10098081
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cause-and-effect relations are one of the most valuable types of knowledge sought after throughout the data-driven sciences since they translate into stable and generalizable explanations as well as efficient and robust decision-making capabilities. Inferring these relations from data, however, is a challenging task. Two of the most common barriers to this goal are known as confounding and selection biases. The former stems from the systematic bias introduced during the treat- ment assignment, while the latter comes from the systematic bias during the collection of units into the sample. In this paper, we consider the problem of identifiability of causal effects when both confounding and selection biases are simultaneously present. We first investigate the problem of identifiability when all the available data is biased. We prove that the algorithm proposed by [Bareinboim and Tian, 2015] is, in fact, complete, namely, whenever the algorithm returns a failure condition, no identifiability claim about the causal relation can be made by any other method. We then generalize this setting to when, in addition to the biased data, another piece of external data is available, without bias. It may be the case that a subset of the covariates could be measured without bias (e.g., from census). We examine the problem of identifiability when a combination of biased and unbiased data is available. We propose a new algorithm that subsumes the current state-of-the-art method based on the back-door criterion. 
    more » « less
  2. This paper studies bandit problems where an agent has access to offline data that might be utilized to potentially improve the estimation of each arm’s reward distribution. A major obstacle in this setting is the existence of compound biases from the observational data. Ignoring these biases and blindly fitting a model with the biased data could even negatively affect the online learning phase. In this work, we formulate this problem from a causal perspective. First, we categorize the biases into confounding bias and selection bias based on the causal structure they imply. Next, we extract the causal bound for each arm that is robust towards compound biases from biased observational data. The derived bounds contain theground truth mean reward and can effectively guide the bandit agent to learn a nearly-optimal decision policy. We also conduct regret analysis in both contextual and non-contextual bandit settings and show that prior causal bounds could helpconsistently reduce the asymptotic regret. 
    more » « less
  3. Selection and confounding biases are the two most common impediments to the applicability of causal inference methods in large-scale settings. We generalize the notion of backdoor adjustment to account for both biases and leverage external data that may be available without selection bias (e.g., data from census). We introduce the notion of adjustment pair and present complete graphical conditions for identifying causal effects by adjustment. We further design an algorithm for listing all admissible adjustment pairs in polynomial delay, which is useful for researchers interested in evaluating certain properties of some admissible pairs but not all (common properties include cost, variance, and feasibility to measure). Finally, we describe a statistical estimation procedure that can be performed once a set is known to be admissible, which entails different challenges in terms of finite samples. 
    more » « less
  4. Selection and confounding biases are the two most common impediments to the applicability of causal inference methods in large-scale settings. We generalize the notion of backdoor adjustment to account for both biases and leverage external data that may be available without selection bias (e.g., data from census). We introduce the notion of adjustment pair and present complete graphical conditions for identifying causal effects by adjustment. We further design an algorithm for listing all admissible adjustment pairs in polynomial delay, which is useful for researchers interested in evaluating certain properties of some admissible pairs but not all (common properties include cost, variance, and feasibility to measure). Finally, we describe a statistical estimation procedure that can be performed once a set is known to be admissible, which entails different challenges in terms of finite samples. 
    more » « less
  5. Discovery of causal relations from observational data is essential for many disciplines of science and real-world applications. However, unlike other machine learning algorithms, whose development has been greatly fostered by a large amount of available benchmark datasets, causal discovery algorithms are notoriously difficult to be systematically evaluated because few datasets with known ground-truth causal relations are available. In this work, we handle the problem of evaluating causal discovery algorithms by building a flexible simulator in the medical setting. We develop a neuropathic pain diagnosis simulator, inspired by the fact that the biological processes of neuropathic pathophysiology are well studied with well-understood causal influences. Our simulator exploits the causal graph of theneuropathic pain pathology and its parameters in the generator are estimated from real-life patient cases. We show that the data generated from our simulator have similar statistics as real-world data. As a clear advantage, the simulator can produce infinite samples without jeopardizing the privacy of real-world patients. Our simulator provides a natural tool for evaluating various types of causal discovery algorithms, including those to deal with practical issues in causal discovery, such as unknown confounders, selection bias, and missing data. Using our simulator,we have evaluated extensively causal discovery algorithms under various settings. 
    more » « less