skip to main content

Search for: All records

Award ID contains: 1707282

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The role of negative hydroxyl ions in liquid-phase plasma discharge formation is investigated using an inhouse modeling framework. Two tunneling sources for electrons are considered—tunneling ionization of water molecules and tunneling detachment of negative hydroxyl ions together with additional reaction steps. The simulations are conducted for a needle-like powered electrode with two different nanosecond rise time voltage profiles—a linear and an exponential rise. Both the profiles have a maximum voltage of 15 kV. The predictions show that the electron detachment, which has a much lower threshold energy requirement, provides a stream of electrons at low applied voltage during the initial rise time. The electrical forces from the electron detachment process generate stronger compression but a weaker expansion regime in the liquid resulting in ∼40% increase in the density and only ∼1% decrease. The electron detachment tunneling process is found to be not limited by the electric field, but rather by the availability of negative hydroxyl ions in the system and ceases when these ions are depleted. The tunnel ionization of water molecules forms the electron wave at a higher applied voltage, but the resulting peak electron number density is typically six orders of magnitude larger than the detachment tunneling. Themore »higher electron number density allows the recycling of depleted negative hydroxyl ions in the system and can reestablish tunneling detachment. In addition, the system experiences a larger variation in density; specifically, a decrease in density due to tunnel ionization. The prediction also shows that irrespective of the initial electron sources (i.e. tunnel ionization or tunnel detachment) the reduced electric field is not sufficient enough to allow electron impact ionization to be active and make a significant contribution. Path flux analysis is conducted to determine the kinetics responsible for the recycling of the negative hydroxyl ions.« less