skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of negative hydroxyl ions in the electron generation and breakdown during plasma formation in liquid water
The role of negative hydroxyl ions in liquid-phase plasma discharge formation is investigated using an inhouse modeling framework. Two tunneling sources for electrons are considered—tunneling ionization of water molecules and tunneling detachment of negative hydroxyl ions together with additional reaction steps. The simulations are conducted for a needle-like powered electrode with two different nanosecond rise time voltage profiles—a linear and an exponential rise. Both the profiles have a maximum voltage of 15 kV. The predictions show that the electron detachment, which has a much lower threshold energy requirement, provides a stream of electrons at low applied voltage during the initial rise time. The electrical forces from the electron detachment process generate stronger compression but a weaker expansion regime in the liquid resulting in ∼40% increase in the density and only ∼1% decrease. The electron detachment tunneling process is found to be not limited by the electric field, but rather by the availability of negative hydroxyl ions in the system and ceases when these ions are depleted. The tunnel ionization of water molecules forms the electron wave at a higher applied voltage, but the resulting peak electron number density is typically six orders of magnitude larger than the detachment tunneling. The higher electron number density allows the recycling of depleted negative hydroxyl ions in the system and can reestablish tunneling detachment. In addition, the system experiences a larger variation in density; specifically, a decrease in density due to tunnel ionization. The prediction also shows that irrespective of the initial electron sources (i.e. tunnel ionization or tunnel detachment) the reduced electric field is not sufficient enough to allow electron impact ionization to be active and make a significant contribution. Path flux analysis is conducted to determine the kinetics responsible for the recycling of the negative hydroxyl ions.  more » « less
Award ID(s):
1707282
PAR ID:
10273200
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Plasma sources science technology
Volume:
30
ISSN:
1361-6595
Page Range / eLocation ID:
065025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nano-second, capillary discharges (nCDs) are unique plasma sources in their ability to sustain high specific energy deposition ω dep approaching 10 eV/molecule in molecular gases. This high energy loading on short timescales produces both high plasma densities and high densities of molecular exited states. These high densities of electrons and excited states interact with each other during the early afterglow through electron collision quenching and associative ionization. In this paper we discuss results from a two-dimensional computational investigation of a nCD sustained in air at a pressure of 28.5 mbar and with a voltage amplitude 20 kV. Discharges were investigated for two circuit configurations—a floating low voltage electrode and with the low voltage electrode connected to ground through a ballast resistor. The first configuration produced a single ionization wave from the high to low voltage electrode. The second produced converging ionization waves beginning at both electrodes. With a decrease of the tube radius, the velocity of the ionization fronts decreased while the shape of the ionization wave changed from the electron density being distributed smoothly in the radial direction, to being hollow shaped where there is a higher electron density near the tube wall. For sufficiently small tubes, the near-wall maxima merge to have the higher density on the axis of the capillary tube. In the early afterglow, the temporal and radial behavior of the N 2 (C 3 Π u ) density is a sensitive function of ω dep due to electron collision quenching. These trends indicate that starting from ω dep ⩾ 0.3 eV/molecule, it is necessary to take into account interactions of electrons with electronically excited species during the discharge and early afterglow. 
    more » « less
  2. Recent advancement in the switching of perpendicular magnetic tunnel junctions with an electric field has been a milestone for realizing ultra-low energy memory and computing devices. To integrate with current spin-transfer torque-magnetic tunnel junction and spin–orbit torque-magnetic tunnel junction devices, the typical linear fJ/V m range voltage controlled magnetic anisotropy (VCMA) needs to be significantly enhanced with approaches that include new materials or stack engineering. A possible bidirectional and 1.1 pJ/V m VCMA effect has been predicted by using heavily electron-depleted Fe/MgO interfaces. To improve upon existing VCMA technology, we have proposed inserting high work function materials underneath the magnetic layer. This will deplete electrons from the magnetic layer biasing the gating window into the electron-depleted regime, where the pJ/V m and bidirectional VCMA effect was predicted. We have demonstrated tunable control of the Ta/Pd(x)/Ta underlayer's work function. By varying the Pd thickness (x) from 0 to 10 nm, we have observed a tunable change in the Ta layer's work function from 4.32 to 4.90 eV. To investigate the extent of the electron depletion as a function of the Pd thickness in the underlayer, we have performed DFT calculations on supercells of Ta/Pd(x)/Ta/CoFe/MgO, which demonstrate that electron depletion will not be fully screened at the CoFe/MgO interface. Gated pillar devices with Hall cross geometries were fabricated and tested to extract the anisotropy change as a function of applied gate voltage for samples with various Pd thicknesses. The electron-depleted Pd samples show three to six times VCMA improvement compared to the electron accumulated Ta control sample. 
    more » « less
  3. Abstract In experiment and 2D3V PIC MCC simulations, the breakdown development in a pulsed discharge in helium is studied forU= 3.2 kV and 10 kV andP= 100 Torr. The breakdown process is found to have a stochastic nature, and the electron avalanche develops in different experimental and simulation runs with time delays ranging from 0.3 to 8μs. Nevertheless our experiments demonstrate that the breakdown delay time distribution can be controlled with a change of the pulse discharge frequency. The simulation results show that the breakdown process can be distinguished in three stages with (a) the ionization by seed electrons, (b) the ions drift to the cathode and (c) the enhanced ionization within the cathode sheath by the electrons emitted from the cathode. The effects of variation of seed electron concentrations, voltage rise times, voltage amplitudes and ion–electron emission coefficients on the breakdown development in the pulsed gas discharge are reported. 
    more » « less
  4. Nanoscale plasmonic gaps are useful structures both electrically, for creating quantum tunnel junctions, and optically, for confining light. Inelastic tunneling of electrons in a tunnel junction is an attractive source of light due to the ultrafast response rate granted by the tunneling time of electrons in the system as well as the compact dimensions. A main hurdle for these light emitting tunnel junctions, however, is their low external efficiency given by both low electron-to-plasmon conversion as well as low plasmon-to-photon conversion. Inversely, coupling light into a nanogap for high confinement and field enhancement can be difficult due to the size mismatches involved. We show a 3 nm gap metal-insulator-metal plasmonic tunnel junction evanescently coupled to the fundamental TE mode of a standard silicon waveguide in a tapered directional coupler configuration with a transmission efficiency of 54.8% atλ =1.55μm and a 3-dB coupling bandwidth of 705 nm. In the inverse configuration, we show an electric field enhancement of |E|/|E0| ≈120 within a plasmonic tunnel junction in the technologically important optical telecommunications band. 
    more » « less
  5. Abstract Formation of energetic species at the surface of aqueous microdroplets, including abundant hydroxyl radicals, oxidation products, and ionized N2and O2gas, has been previously attributed to the high electric field at the droplet surface. Here, evidence for a new mechanism for electronic excitation involving electron emission from negatively charged water droplets is shown. Droplet evaporation can lead to the emission of ions and droplet fission, but unlike positively charged droplets, negatively charged droplets can also shed charge by electron emission. With nanoelectrospray, no anions or negatively charged droplets are produced with a positive electrospray potential. In contrast, abundant O2+•and H3O+(H2O) are formed with negative electrospray. When toluene vapor is introduced with negative electrospray, abundant toluene radical cations and fragments are produced. Both O2+•and toluene radical cations are produced with pneumatic nebulization. The electrons produced from evaporating negatively charged droplets can be accelerated by an external electric field in electrospray, or by the field generated between droplets with opposite polarities produced by pneumatic nebulization. This electron emission/ionization mechanism leads to electronic excitation >10 eV, and it may explain some of the surprising chemistries that were previously attributed to the high intrinsic electric field at the surface of aqueous droplets. 
    more » « less