skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1710298

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, the use of bottom-TJ geometry in LEDs, which achieves N-polar-like alignment of polarization fields in conventional metal-polar orientations, has enabled enhancements in LED performance due to improved injection efficiency. Here, we elucidate the root causes behind the enhanced injection efficiency by employing mature laser diode structures with optimized heterojunction GaN/In0.17Ga0.83N/GaN TJs and UID GaN spacers to separate the optical mode from the heavily doped absorbing p-cladding regions. In such laser structures, polarization offsets at the electron blocking layer, spacer, and quantum barrier interfaces play discernable roles in carrier transport. By comparing a top-TJ structure to a bottom-TJ structure, and correlating features in the electroluminescence, capacitance-voltage, and current-voltage characteristics to unique signatures of the N- and Ga-polar polarization heterointerfaces in energy band diagram simulations, we identify that improved hole injection at low currents, and improved electron blocking at high currents, leads to higher injection efficiency and higher output power for the bottom-TJ device throughout 5 orders of current density (0.015–1000 A/cm2). Moreover, even with the addition of a UID GaN spacer, differential resistances are state-of-the-art, below 7 × 10−4Ωcm2. These results highlight the virtues of the bottom-TJ geometry for use in high-efficiency laser diodes.

     
    more » « less
  2.  
    more » « less
  3. We report optically and electrically pumped∼<#comment/>280nmdeep ultraviolet (DUV) light emitting diodes (LEDs) with ultra-thin GaN/AlN quantum disks (QDs) inserted into AlGaN nanorods by selective epitaxial regrowth using molecular beam epitaxy. The GaN/AlN QD LED has shown strong DUV emission distribution on the ordered nanorods and high internal quantum efficiency of 81.2%, as a result of strain release and reduced density of threading dislocations revealed by transmission electron microscopy. Nanorod assembly suppresses the lateral guiding mode of light, and light extraction efficiency can be increased from 14.9% for planar DUV LEDs to 49.6% for nanorod DUV LEDs estimated by finite difference time domain simulations. Presented results offer the potential to solve the issue of external quantum efficiency limitation of DUV LED devices.

     
    more » « less
  4. A high-conductivity two-dimensional (2D) hole gas, analogous to the ubiquitous 2D electron gas, is desirable in nitride semiconductors for wide-bandgap p-channel transistors. We report the observation of a polarization-induced high-density 2D hole gas in epitaxially grown gallium nitride on aluminium nitride and show that such hole gases can form without acceptor dopants. The measured high 2D hole gas densities of about 5 × 10 13 per square centimeters remain unchanged down to cryogenic temperatures and allow some of the lowest p-type sheet resistances among all wide-bandgap semiconductors. The observed results provide a probe for studying the valence band structure and transport properties of wide-bandgap nitride interfaces. 
    more » « less