skip to main content


Search for: All records

Award ID contains: 1712725

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Most reconstruction algorithms for photoacoustic imaging assume that the pressure field is measured by ultrasound sensors placed on a detection surface. However, such sensors do not measure pressure exactly due to their non-uniform directional and frequency responses, and resolution limitations. This is the case for piezoelectric sensors that are commonly employed for photoacoustic imaging. In this paper, using the method of matched asymptotic expansions and the basic constitutive relations for piezoelectricity, we propose a simple mathematical model for piezoelectric transducers. The approach simultaneously models how the pressure waves induce the piezoelectric measurements and how the presence of the sensors affects the pressure waves. Using this model, we analyze whether the data gathered by piezoelectric sensors leads to the mathematical solvability of the photoacoustic imaging problem. We conclude that this imaging problem is well-posed in certain normed spaces and under a geometric assumption. We also propose an iterative reconstruction algorithm that incorporates the model for piezoelectric measurements. A numerical implementation of the reconstruction algorithm is presented. 
    more » « less