skip to main content


Title: Solvability for photoacoustic imaging with idealized piezoelectric sensors
Most reconstruction algorithms for photoacoustic imaging assume that the pressure field is measured by ultrasound sensors placed on a detection surface. However, such sensors do not measure pressure exactly due to their non-uniform directional and frequency responses, and resolution limitations. This is the case for piezoelectric sensors that are commonly employed for photoacoustic imaging. In this paper, using the method of matched asymptotic expansions and the basic constitutive relations for piezoelectricity, we propose a simple mathematical model for piezoelectric transducers. The approach simultaneously models how the pressure waves induce the piezoelectric measurements and how the presence of the sensors affects the pressure waves. Using this model, we analyze whether the data gathered by piezoelectric sensors leads to the mathematical solvability of the photoacoustic imaging problem. We conclude that this imaging problem is well-posed in certain normed spaces and under a geometric assumption. We also propose an iterative reconstruction algorithm that incorporates the model for piezoelectric measurements. A numerical implementation of the reconstruction algorithm is presented.  more » « less
Award ID(s):
1712725
NSF-PAR ID:
10168733
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
ISSN:
0885-3010
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured acoustic data that are induced by propagation of the photoacoustic wavefields through the skull. To properly account for these effects, previously proposed image reconstruction methods for transcranial PACT require knowledge of the spatial distribution of the elastic parameters of the skull. However, estimating the spatial distribution of these parameters prior to the PACT experiment remains challenging. To circumvent this issue, in this work a method to jointly reconstruct the initial pressure distribution and a low-dimensional representation of the elastic parameters of the skull is developed and investigated. The joint reconstruction (JR) problem is solved by use of a proximal optimization method that allows constraints and non-smooth regularization terms. The proposed method is evaluated by use of large-scale three-dimensional (3D) computer-simulation studies that mimic transcranial PACT experiments.

     
    more » « less
  2. Abstract

    Photoacoustic computed tomography (PACT), also known as optoacoustic tomography, is an emerging imaging technique that holds great promise for biomedical imaging. PACT is a hybrid imaging method that can exploit the strong endogenous contrast of optical methods along with the high spatial resolution of ultrasound methods. In its canonical form that is addressed in this article, PACT seeks to estimate the photoacoustically-induced initial pressure distribution within the object. Image reconstruction methods are employed to solve the acoustic inverse problem associated with the image formation process. When an idealized imaging scenario is considered, analytic solutions to the PACT inverse problem are available; however, in practice, numerous challenges exist that are more readily addressed within an optimization-based, or iterative, image reconstruction framework. In this article, the PACT image reconstruction problem is reviewed within the context of modern optimization-based image reconstruction methodologies. Imaging models that relate the measured photoacoustic wavefields to the sought-after object function are described in their continuous and discrete forms. The basic principles of optimization-based image reconstruction from discrete PACT measurement data are presented, which includes a review of methods for modeling the PACT measurement system response and other important physical factors. Non-conventional formulations of the PACT image reconstruction problem, in which acoustic parameters of the medium are concurrently estimated along with the PACT image, are also introduced and reviewed.

     
    more » « less
  3. Abstract We consider the problem of reconstructing a signal from under-determined modulo observations (or measurements). This observation model is inspired by a relatively new imaging mechanism called modulo imaging, which can be used to extend the dynamic range of imaging systems; variations of this model have also been studied under the category of phase unwrapping. Signal reconstruction in the under-determined regime with modulo observations is a challenging ill-posed problem, and existing reconstruction methods cannot be used directly. In this paper, we propose a novel approach to solving the signal recovery problem under sparsity constraints for the special case to modulo folding limited to two periods. We show that given a sufficient number of measurements, our algorithm perfectly recovers the underlying signal. We also provide experiments validating our approach on toy signal and image data and demonstrate its promising performance. 
    more » « less
  4. Positron emission tomography (PET) is traditionally modeled as discrete systems. Such models may be viewed as piecewise constant approximations of the underlying continuous model for the physical processes and geometry of the PET imaging. Due to the low accuracy of piecewise constant approximations, discrete models introduce an irreducible modeling error which fundamentally limits the quality of reconstructed images. To address this bottleneck, we propose an integral equation model for the PET imaging based on the physical and geometrical considerations, which describes accurately the true coincidences. We show that the proposed integral equation model is equivalent to the existing idealized model in terms of line integrals which is accurate but not suitable for numerical approximation. The proposed model allows us to discretize it using higher accuracy approximation methods. In particular, we discretize the integral equation by using the collocation principle with piecewise linear polynomials. The discretization leads to new ill-conditioned discrete systems for the PET reconstruction, which are further regularized by a novel wavelet-based regularizer. The resulting non-smooth optimization problem is then solved by a preconditioned proximity fixed-point algorithm. Convergence of the algorithm is established for a range of parameters involved in the algorithm. The proposed integral equation model combined with the discretization, regularization, and optimization algorithm provides a new PET image reconstruction method. Numerical results reveal that the proposed model substantially outperforms the conventional discrete model in terms of the consistency to simulated projection data and reconstructed image quality. This indicates that the proposed integral equation model with appropriate discretization and regularizer can significantly reduce modeling errors and suppress noise, which leads to improved image quality and projection data estimation. 
    more » « less
  5. We introduce a novel approach to waveform inversion based on a data-driven reduced order model (ROM) of the wave operator. The presentation is for the acoustic wave equation, but the approach can be extended to elastic or electromagnetic waves. The data are time resolved measurements of the pressure wave gathered by an acquisition system that probes the unknown medium with pulses and measures the generated waves. We propose to solve the inverse problem of velocity estimation by minimizing the square misfit between the ROM computed from the recorded data and the ROM computed from the modeled data, at the current guess of the velocity. We give a step by step computation of the ROM, which depends nonlinearly on the data and yet can be obtained from them in a noniterative fashion, using efficient methods from linear algebra. We also explain how to make the ROM robust to data inaccuracy. The ROM computation requires the full array response matrix gathered with colocated sources and receivers. However, we find that the computation can deal with an approximation of this matrix, obtained from towed-streamer data using interpolation and reciprocity on-the-fly. Although the full-waveform inversion approach of nonlinear least-squares data fitting is challenging without low-frequency information, due to multiple minima of the data fit objective function, we find that the ROM misfit objective function has better behavior, even for a poor initial guess. We also find by explicit computation of the objective functions in a simple setting that the ROM misfit objective function has convexity properties, whereas the least-squares data fit objective function displays multiple local minima. 
    more » « less