Abstract We consider the problem of reconstructing a signal from under-determined modulo observations (or measurements). This observation model is inspired by a relatively new imaging mechanism called modulo imaging, which can be used to extend the dynamic range of imaging systems; variations of this model have also been studied under the category of phase unwrapping. Signal reconstruction in the under-determined regime with modulo observations is a challenging ill-posed problem, and existing reconstruction methods cannot be used directly. In this paper, we propose a novel approach to solving the signal recovery problem under sparsity constraints for the special case to modulo folding limited to two periods. We show that given a sufficient number of measurements, our algorithm perfectly recovers the underlying signal. We also provide experiments validating our approach on toy signal and image data and demonstrate its promising performance.
more »
« less
Solvability for photoacoustic imaging with idealized piezoelectric sensors
Most reconstruction algorithms for photoacoustic imaging assume that the pressure field is measured by ultrasound sensors placed on a detection surface. However, such sensors do not measure pressure exactly due to their non-uniform directional and frequency responses, and resolution limitations. This is the case for piezoelectric sensors that are commonly employed for photoacoustic imaging. In this paper, using the method of matched asymptotic expansions and the basic constitutive relations for piezoelectricity, we propose a simple mathematical model for piezoelectric transducers. The approach simultaneously models how the pressure waves induce the piezoelectric measurements and how the presence of the sensors affects the pressure waves. Using this model, we analyze whether the data gathered by piezoelectric sensors leads to the mathematical solvability of the photoacoustic imaging problem. We conclude that this imaging problem is well-posed in certain normed spaces and under a geometric assumption. We also propose an iterative reconstruction algorithm that incorporates the model for piezoelectric measurements. A numerical implementation of the reconstruction algorithm is presented.
more »
« less
- Award ID(s):
- 1712725
- PAR ID:
- 10168733
- Date Published:
- Journal Name:
- IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
- ISSN:
- 0885-3010
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The receive sensitivity of lead zirconate titanate (PZT) piezoelectric micromachined ultrasound transducers (PMUTs) was improved by applying a DC bias during operation. The PMUT receive sensitivity is governed by the voltage piezoelectric coefficient, h31,f. With applied DC biases (up to 15 V) on a 2 μm PbZr0.52Ti0.48O3 film, e31,f increased 1.6 times, permittivity decreased by a factor of 0.6, and the voltage coefficient increased by ~2.5 times. For released PMUT devices, the ultrasound receive sensitivity improved by 2.5 times and the photoacoustic signal improved 1.9 times with 15 V applied DC bias. B-mode photoacoustic imaging experiments showed that with DC bias, the PMUT received clearer photoacoustic signals from pencil leads at 4.3 cm, compared to 3.7 cm without DC bias.more » « less
-
Langfelder, Giacomo (Ed.)In this letter, we report on a high-sensitivity whispering gallery mode (WGM) resonator-based air-coupled ultrasound sensor capable of detecting minute pressure variations across an ultrasound frequency spectrum of 0.6–3.5 MHz. The sensor comprises a microspherical glass shell of approximately 450 μm in radius and nonuniform shell thickness of 7–15 μm, which is optically coupled to a tunable laser for resonance excitation. The setup allows for the precise measurement of acoustic signals, benefiting from the high optical Q-factor of ∼2 million of the blown glass microspherical shells. A noise equivalent pressure as low as 40 μPa/ √Hz was obtained at 1.72-MHz ultrasound frequency. A very good correspondence between the simulated axisymmetric resonance frequencies measured using the WGM resonator and a 3D finite-element analysis model in COMSOL was established. The sensor showed an expected linear dependence on the drive voltage of the ultrasound transducer. The distortion of the microspherical shell under acoustic pressure was also independently confirmed using a laser Doppler vibrometer. The sensor’s capability to handle high-frequency ultrasonic waves with significantly better signal-to-noise ratio than conventional piezoelectric- or microphone-based systems is demonstrated, highlighting its suitability for advanced photoacoustic applications.more » « less
-
null (Ed.)Abstract We propose a data and knowledge driven approach for SPECT by combining a classical iterative algorithm of SPECT with a convolutional neural network.The classical iterative algorithm, such as ART and ML-EM, is employed to provide the model knowledge of SPECT.A modified U-net is then connected to exploit further features of reconstructed images and data sinograms of SPECT.We provide mathematical formulations for the architecture of the proposed networks.The networks are trained by supervised learning using the technique of mini-batch optimization.We apply the trained networks to the problems of simulated lung perfusion imaging and simulated myocardial perfusion imaging, and numerical results demonstrate their effectiveness of reconstructing source images from noisy data measurements.more » « less
-
Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.more » « less
An official website of the United States government

