skip to main content


Title: Nurturing STEM talent in rural setting
Rural schools, especially smaller ones, offer enormous opportunities for teachers to get to know their students and to cultivate their academic talents. However, students with potential in science, technology, engineering, and mathematics (STEM) face specific obstacles to having their talents fully realized in rural schools. Joni Lakin, Tamra Stambaugh, Lori Ihrig, Duhita Mahatmya, and Susan G. Assouline describe the STEM Excellence and Leadership project from the University of Iowa, which seeks to equip rural teachers in grades 5-8 with the skills and knowledge to recognize and grow STEM talent in rural areas. Examples of success and lessons learned are shared.  more » « less
Award ID(s):
1713123
NSF-PAR ID:
10336715
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Phi Delta Kappan
Volume:
103
Issue:
4
ISSN:
0031-7217
Page Range / eLocation ID:
24 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose This paper aims to examine the role of school stakeholders (e.g. advisory board members, school administrators, parents, teachers and school board members) at a 99% black academy in promoting the achievement and broadening participation of high school black students in engineering career pathways. Design/methodology/approach The authors followed a qualitative case study design to explore the experiences of school stakeholders (e.g. students, district and school personnel and community partners) associated with the implementation of the career academy (Stake, 2006; Yin, 1994). Findings The authors found that the school relied heavily on the support of the community in the form of an advisory board – including university faculty and industry leaders – to actively develop culturally responsive strategies (e.g. American College Test preparation, work-based learning opportunities) to ensure the success of black students interested in pursuing career pathways in engineering. Thus, school stakeholders in the academy of engineering served as authentic leaders who inspired academy students by serving as role models and setting examples through what they do as engineering professionals. It was quite evident that the joy and fulfillment that these authentic leaders gained from using their talents directly or indirectly inspired students in the academy to seek out and cultivate the talents they are good at and passionate about as well (Debebe, 2017). Moreover, the career academy provided environmental or sociocultural conditions that promoted the development of learners’ gifts and talents (Plucker and Barab, 2005). Within that context, the goals of career academy school stakeholders were to support students in the discovery of what they are good at doing and to structure their educational experiences to cultivate their gifts into talents. Research limitations/implications It is also important to acknowledge that this study is not generalizable to the one million career academy students across the nation. Yet, the authors believe researchers should continue to examine the career academy advisory board as a source of capital for engaging and preparing diverse learners for success post-high school. Further research is needed to investigate how advisory boards support students’ in school and postsecondary outcomes, particularly for diverse students. Practical implications The authors highlight promising practices for schools to implement in establishing a diverse talent pipeline. Social implications On a theoretical level, the authors found important insights into the possibility of black students benefiting from a culturally responsive advisory board that provided social and cultural capital (e.g. aspirational, navigational and social) resources for their success. Originality/value While prior researchers have studied the positive impact of teachers in career academies as a contributor to social capital for students (Lanford and Maruco, 2019) and what diverse students bring to the classroom as a form of capital Debebe(Yosso, 2005), research has not identified the role of the advisory board (in its efforts to connect the broader community) as a vehicle for equipping ethnically and racially diverse students who come from economically disadvantaged backgrounds with social capital. Within that sense, the authors believe the advisory board at Stanton Academy relied on what the authors term local community capital to provide resources and supports for black students’ successful transition from high school into science, technology, engineering, and mathematics (STEM)-related college and career pathways. 
    more » « less
  2. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  3. Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. 
    more » « less
  4. Abstract

    The pipeline of highly trained STEM (science, technology, engineering, and mathematics) professionals has narrowed in recent decades, forcing society to re‐examine how schools are discovering and developing STEM talent. Of particular concern is the finding that rural students attend post‐secondary schools at lower rates than their urban counterparts, and when they do attend, they are less likely to graduate from STEM programs. One reason may be that they are not prepared for advanced STEM coursework because they lack access to essential STEM talent‐development programs in middle or high school. This creates excellence gaps, which exacerbate the narrowing STEM pipeline to the workforce. To address this, we formed a university–school partnership to develop an outside‐of‐school STEM talent development program, called STEM Excellence, for rural middle‐school students who attend under‐resourced schools. The aim of STEM Excellence was to increase students’ achievement and aspirations while empowering their teachers to develop local STEM programs grounded in developmental psychology theories. STEM Excellence integrated the Talent Development Megamodel Principles of ability, domains of talent, opportunity, and psychosocial variables. STEM Excellence also recognized the interplay of multiple person–environment systems as presented in the Bioecological Systems Model.

     
    more » « less
  5. High-achieving students in economically disadvantaged, rural schools lack access to advanced coursework necessary to pursue science, technology, engineering, and mathematics (STEM) educational and employment goals at the highest levels, contributing to the excellence gap. Out-of-school STEM programming offers one pathway to students’ talent development. Using a concurrent triangulation mixed-methods research design, this study was conducted to evaluate the experiences of 78 high-achieving students and their 32 teachers, participating in an extracurricular, school-based, STEM talent development program for rural students from economically disadvantaged communities. Findings suggest that students and teachers expressed satisfaction with program participation and that they thought more creatively and critically about their work. Results also showed that students’ perceptions of the mathematics and science activities were significantly different, which informs ways to improve programming for future high-achieving, rural students. These findings expand the literature supporting the use of informal STEM education environments for underserved gifted populations to increase engagement in and access to challenging curricula. 
    more » « less