skip to main content


Title: The R-Process Alliance: Abundance Universality among Some Elements at and between the First and Second R-Process Peaks*
Abstract

We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A∼ 80) and second (A∼ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z= 34) or Te (Z= 52) detections, whoser-process enhancement varies by more than a factor of 30 (−0.22 ≤ [Eu/Fe] ≤ +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 ≤Z≤ 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar systemr-process residual pattern. The Te abundances in these stars correlate more closely with the lighterr-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (≤0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and thirdr-process-peak elements. The concept ofr-process universality that is recognized among the lanthanide and third-peak elements inr-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighterr-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 ≤Z≤ 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and secondr-process peaks.

 
more » « less
Award ID(s):
1716251 2020275 1814512 1927130
NSF-PAR ID:
10370438
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
936
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 84
Size(s):
Article No. 84
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a nearly complete rapid neutron-capture process ( r -process) chemical inventory of the metal-poor ([Fe/H] = −1.46 ± 0.10) r -process-enhanced ([Eu/Fe] = +1.32 ± 0.08) halo star HD 222925. This abundance set is the most complete for any object beyond the solar system, with a total of 63 metals detected and seven with upper limits. It comprises 42 elements from 31 ≤ Z ≤ 90, including elements rarely detected in r -process-enhanced stars, such as Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, W, Re, Os, Ir, Pt, and Au. We derive these abundances from an analysis of 404 absorption lines in ultraviolet spectra collected using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and previously analyzed optical spectra. A series of appendices discusses the atomic data and quality of fits for these lines. The r -process elements from Ba to Pb, including all elements at the third r -process peak, exhibit remarkable agreement with the solar r -process residuals, with a standard deviation of the differences of only 0.08 dex (17%). In contrast, deviations among the lighter elements from Ga to Te span nearly 1.4 dex, and they show distinct trends from Ga to Se, Nb through Cd, and In through Te. The r -process contribution to Ga, Ge, and As is small, and Se is the lightest element whose production is dominated by the r -process. The lanthanide fraction, log X La = −1.39 ± 0.09, is typical for r -process-enhanced stars and higher than that of the kilonova from the GW170817 neutron-star merger event. We advocate adopting this pattern as an alternative to the solar r -process-element residuals when confronting future theoretical models of heavy-element nucleosynthesis with observations. 
    more » « less
  2. Abstract

    Whereas light-element abundance variations are a hallmark of globular clusters, there is little evidence for variations in neutron-capture elements. A significant exception is M15, which shows a star-to-star dispersion in neutron-capture abundances of at least one order of magnitude. The literature contains evidence both for and against a neutron-capture dispersion in M92. We conducted an analysis of archival Keck/HIRES spectra of 35 stars in M92, 29 of which are giants, which we use exclusively for our conclusions. M92 conforms to the abundance variations typical of massive clusters. Like other globular clusters, its neutron-capture abundances were generated by ther-process. We confirm a star-to-star dispersion inr-process abundances. Unlike M15, the dispersion is limited to “first-generation” (low-Na, high-Mg) stars, and the dispersion is smaller for Sr, Y, and Zr than for Ba and the lanthanides. This is the first detection of a relation between light-element and neutron-capture abundances in a globular cluster. We propose that a source of the mainr-process polluted the cluster shortly before or concurrently with the first generation of star formation. The heavierr-process abundances were inhomogeneously distributed while the first-generation stars were forming. The second-generation stars formed after several crossing times (∼0.8 Myr); hence, the second generation shows nor-process dispersion. This scenario imposes a minimum temporal separation of 0.8 Myr between the first and second generations.

     
    more » « less
  3. ABSTRACT There has been a concerted effort in recent years to identify the astrophysical sites of the r-process that can operate early in the galaxy. The discovery of many r-process-enhanced (RPE) stars (especially by the R-process Alliance collaboration) has significantly accelerated this effort. However, only limited data exist on the detailed elemental abundances covering the primary neutron-capture peaks. Subtle differences in the structure of the r-process pattern, such as the relative abundances of elements in the third peak, in particular, are expected to constrain the r-process sites further. Here, we present a detailed elemental-abundance analysis of four bright RPE stars selected from the HESP–GOMPA survey. Observations were carried out with the 10-m class telescope Gran Telescopio Canarias (GTC), Spain. The high spectral signal-to-noise ratios obtained allow us to derive abundances for 20 neutron-capture elements, including the third r-process peak element osmium (Os). We detect thorium (Th) in two stars, which we use to estimate their ages. We discuss the metallicity evolution of Mg, Sr, Ba, Eu, Os, and Th in r-II and r-I stars, based on a compilation of RPE stars from the literature. The strontium (Sr) abundance trend with respect to europium (Eu) suggests the need for an additional production site for Sr (similar to several earlier studies); this requirement could be milder for yttrium (Y) and zirconium (Zr). We also show that there could be some time delay between r-II and r-I star formation, based on the Mg/Th abundance ratios. 
    more » « less
  4. ABSTRACT We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they might achieve an acceptable fit at all [Fe/H]. If many proto-NSs are born with strong magnetic fields and short spin periods, then their neutrino-driven winds provide a natural source for Sr, Y, Zr, Mo, Ru, and Ba in low-metallicity stellar populations. Conversely, spherical winds from unmagnetized proto-NSs overproduce the observed Sr, Y, and Zr abundances by a large factor. 
    more » « less
  5. Abstract

    The elemental abundances between strontium and silver (Z= 38–47) observed in the atmospheres of very metal-poor stars in the Galaxy may contain the fingerprint of the weakr-process andνp-process occurring in early core-collapse supernovae explosions. In this work, we combine various astrophysical conditions based on a steady-state model to cover the richness of the supernova ejecta in terms of entropy, expansion timescale, and electron fraction. The calculated abundances based on different combinations of conditions are compared with stellar observations, with the aim of constraining supernova ejecta conditions. We find that some conditions of the neutrino-driven outflows consistently reproduce the observed abundances of our sample. In addition, from the successful combinations, the neutron-rich trajectories better reproduce the observed abundances of Sr–Zr (Z= 38–40), while the proton-rich ones, Mo–Pd (Z= 42–47).

     
    more » « less