Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

null (Ed.)We study the communication cost (or message complexity) of fundamental distributed symmetry breaking problems, namely, coloring and MIS. While significant progress has been made in understanding and improving the running time of such problems, much less is known about the message complexity of these problems. In fact, all known algorithms need at least Ω(m) communication for these problems, where m is the number of edges in the graph. We addressthe following question in this paper: can we solve problems such as coloring and MIS using sublinear, i.e., o(m) communication, and if sounder what conditions? In a classical result, Awerbuch, Goldreich, Peleg, and Vainish [JACM 1990] showed that fundamental global problems such asbroadcast and spanning tree construction require at least o(m) messages in the KT1 Congest model (i.e., Congest model in which nodes have initial knowledge of the neighbors' ID's) when algorithms are restricted to be comparisonbased (i.e., algorithms inwhich node ID's can only be compared). Thirty five years after this result, King, Kutten, and Thorup [PODC 2015] showed that onecan solve the above problems using Õ(n) messages (n is the number of nodes in the graph) in Õ(n) rounds in the KT1 Congest model if noncomparisonbased algorithms are permitted. An important implication of this result is that one can use the synchronous nature of the KT1 Congest model, using silence to convey information,and solve any graph problem using noncomparisonbased algorithms with Õ(n) messages, but this takes an exponential number of rounds. In the asynchronous model, even this is not possible. In contrast, much less is known about the message complexity of local symmetry breaking problems such as coloring and MIS. Our paper fills this gap by presenting the following results. Lower bounds: In the KT1 CONGEST model, we show that any comparisonbased algorithm, even a randomized Monte Carlo algorithm with constant success probability, requires Ω(n 2) messages in the worst case to solve either (△ + 1)coloring or MIS, regardless of the number of rounds. We also show that Ω(n) is a lower bound on the number ofmessages for any (△ + 1)coloring or MIS algorithm, even noncomparisonbased, and even with nodes having initial knowledge of up to a constant radius. Upper bounds: In the KT1 CONGEST model, we present the following randomized noncomparisonbased algorithms for coloring that, with high probability, use o(m) messages and run in polynomially many rounds.(a) A (△ + 1)coloring algorithm that uses Õ(n1.5) messages, while running in Õ(D + √ n) rounds, where D is the graph diameter. Our result also implies an asynchronous algorithm for (△ + 1)coloring with the same message bound but running in Õ(n) rounds. (b) For any constantε > 0, a (1+ε)△coloring algorithm that uses Õ(n/ε 2 ) messages, while running in Õ(n) rounds. If we increase our input knowledge slightly to radius 2, i.e.,in the KT2 CONGEST model, we obtain:(c) A randomized comparisonbased MIS algorithm that uses Õ(n 1.5) messages. while running in Õ( √n) rounds. While our lower bound results can be viewed as counterparts to the classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM 90], but for local problems, our algorithms are the firstknown algorithms for coloring and MIS that take o(m) messages and run in polynomially many rounds.more » « less

Gilbert, Seth (Ed.)This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in asynchronous networks. Kutten et al. (JACM 2015) presented a singularly near optimal randomized leader election algorithm for general synchronous networks that ran in O(D) time and used O(m log n) messages (where D, m, and n are the network’s diameter, number of edges and number of nodes, respectively) with high probability. Both bounds are near optimal (up to a logarithmic factor), since Ω(D) and Ω(m) are the respective lower bounds for time and messages for leader election even for synchronous networks and even for (MonteCarlo) randomized algorithms. On the other hand, for general asynchronous networks, leader election algorithms are only known that are either time or message optimal, but not both. Kutten et al. (DISC 2020) presented a randomized asynchronous leader election algorithm that is singularly near optimal for complete networks, but left open the problem for general networks. This paper shows that singularly near optimal (up to polylogarithmic factors) bounds can be achieved for general asynchronous networks. We present a randomized singularly near optimal leader election algorithm that runs in O(D + log² n) time and O(m log² n) messages with high probability. Our result is the first known distributed leader election algorithm for asynchronous networks that is near optimal with respect to both time and message complexity and improves over a long line of results including the classical results of Gallager et al. (ACM TOPLAS, 1983), Peleg (JPDC, 1989), and Awerbuch (STOC, 89).more » « less

null (Ed.)Maximal Independent Set (MIS) is one of the fundamental problems in distributed computing. The round (time) complexity of distributed MIS has traditionally focused on the worstcase time for all nodes to finish. The bestknown (randomized) MIS algorithms take O(log n) worstcase rounds on general graphs (where n is the number of nodes). Breaking the O(log n) worstcase bound has been a longstanding open problem, while currently the bestknown lower bound is [EQUATION] rounds. Motivated by the goal to reduce total energy consumption in energyconstrained networks such as sensor and ad hoc wireless networks, we take an alternative approach to measuring performance. We focus on minimizing the total (or equivalently, the average) time for all nodes to finish. It is not clear whether the currently bestknown algorithms yield constantround (or even o(log n)) nodeaveraged round complexity for MIS in general graphs. We posit the sleeping model, a generalization of the traditional model, that allows nodes to enter either "sleep" or "waking" states at any round. While waking state corresponds to the default state in the traditional model, in sleeping state a node is "offline", i.e., it does not send or receive messages (and messages sent to it are dropped as well) and does not incur any time, communication, or local computation cost. Hence, in this model, only rounds in which a node is awake are counted and we are interested in minimizing the average as well as the worstcase number of rounds a node spends in the awake state, besides the traditional worstcase round complexity (i.e., the rounds for all nodes to finish including both the awake and sleeping rounds). Our main result is that we show that MIS can be solved in (expected) O(1) rounds under nodeaveraged awake complexity measure in the sleeping model. In particular, we present a randomized distributed algorithm for MIS that has expected O(1)rounds nodeaveraged awake complexity and, with high probability1 has O(log n)rounds worstcase awake complexity and O(log3.41 n)rounds worstcase complexity. Our work is a step towards understanding the nodeaveraged complexity of MIS both in the traditional and sleeping models, as well as designing energyefficient distributed algorithms for energyconstrained networks.more » « less

We study smoothed analysis of distributed graph algorithms, focusing on the fundamental minimum spanning tree (MST) problem. With the goal of studying the time complexity of distributed MST as a function of the "perturbation" of the input graph, we posit a smoothing model that is parameterized by a smoothing parameter 0 ≤ ϵ(n) ≤ 1 which controls the amount of random edges that can be added to an input graph G per round. Informally, ϵ(n) is the probability (typically a small function of n, e.g., n¼) that a random edge can be added to a node per round. The added random edges, once they are added, can be used (only) for communication. We show upper and lower bounds on the time complexity of distributed MST in the above smoothing model. We present a distributed algorithm that, with high probability, 1 computes an MST and runs in Õ(min{1/√ϵ(n)2O(√log n), D+ √n}) rounds2 where ϵ is the smoothing parameter, D is the network diameter and n is the network size. To complement our upper bound, we also show a lower bound of Ω(min{1/√ϵ(n), D + √n}). We note that the upper and lower bounds essentially match except for a multiplicative 2O(√log n) polylog(n) factor. Our work can be considered as a first step in understanding the smoothed complexity of distributed graph algorithms.more » « less