skip to main content


Search for: All records

Award ID contains: 1718738

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Regularized sparse learning with the ℓ0-norm is important in many areas, including statistical learning and signal processing. Iterative hard thresholding (IHT) methods are the state-of-the-art for nonconvex-constrained sparse learning due to their capability of recovering true support and scalability with large datasets. The current theoretical analysis of IHT assumes the use of centralized IID data. In realistic large-scale scenarios, however, data are distributed, seldom IID, and private to edge computing devices at the local level. Consequently, it is required to study the property of IHT in a federated environment, where local devices update the sparse model individually and communicate with a central server for aggregation infrequently without sharing local data. In this paper, we propose the first group of federated IHT methods: Federated Hard Thresholding (Fed-HT) and Federated Iterative Hard Thresholding (FedIter-HT) with theoretical guarantees. We prove that both algorithms have a linear convergence rate and guarantee for recovering the optimal sparse estimator, which is comparable to classic IHT methods, but with decentralized, non-IID, and unbalanced data. Empirical results demonstrate that the Fed-HT and FedIter-HT outperform their competitor—a distributed IHT, in terms of reducing objective values with fewer communication rounds and bandwidth requirements. 
    more » « less
  2. null (Ed.)
    Although graph convolutional networks (GCNs) that extend the convolution operation from images to graphs have led to competitive performance, the existing GCNs are still difficult to handle a variety of applications, especially cheminformatics problems. Recently multiple GCNs are applied to chemical compound structures which are represented by the hydrogen-depleted molecular graphs of different size. GCNs built for a binary adjacency matrix that reflects the connectivity among nodes in a graph do not account for the edge consistency in multiple molecular graphs, that is, chemical bonds (edges) in different molecular graphs can be similar due to the similar enthalpy and interatomic distance. In this paper, we propose a variant of GCN where a molecular graph is first decomposed into multiple views of the graph, each comprising a specific type of edges. In each view, an edge consistency constraint is enforced so that similar edges in different graphs can receive similar attention weights when passing information. Similarly to prior work, we prove that in each layer, our method corresponds to a spectral filter derived by the first order Chebyshev approximation of graph Laplacian. Extensive experiments demonstrate the substantial advantages of the proposed technique in quantitative structure-activity relationship prediction. 
    more » « less
  3. null (Ed.)
    Time series forecasting is an extensively studied subject in statistics, economics, and computer science. Exploration of the correlation and causation among the variables in a multivariate time series shows promise in enhancing the performance of a time series model. When using deep neural networks as forecasting models, we hypothesize that exploiting the pairwise information among multiple (multivariate) time series also improves their forecast. If an explicit graph structure is known, graph neural networks (GNNs) have been demonstrated as powerful tools to exploit the structure. In this work, we propose learning the structure simultaneously with the GNN if the graph is unknown. We cast the problem as learning a probabilistic graph model through optimizing the mean performance over the graph distribution. The distribution is parameterized by a neural network so that discrete graphs can be sampled differentiably through reparameterization. Empirical evaluations show that our method is simpler, more efficient, and better performing than a recently proposed bilevel learning approach for graph structure learning, as well as a broad array of forecasting models, either deep or non-deep learning based, and graph or non-graph based. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multi-view data. Multi-view clustering, that clusters subjects into subgroups using multi-view data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar with machine learning methods, we categorize them into generative and discriminative classes. In discriminative class, based on the way to integrate multiple views, we split it further into five groups: Common Eigenvector Matrix, Common Coefficient Matrix, Common Indicator Matrix, Direct Combination and Combination After Projection. Furthermore, we discuss the relationships between MVC and some related topics: multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated for practitioners. Some commonly used multi-view datasets are introduced and several representative MVC algorithms from each group are run to conduct the comparison to analyze how and why they perform on those datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination. 
    more » « less
  6. null (Ed.)
  7. Abstract—Materials Genomics initiative has the goal of rapidly synthesizing materials with a given set of desired properties using data science techniques. An important step in this direction is the ability to predict the outcomes of complex chemical reactions. Some graph-based feature learning algorithms have been proposed recently. However, the comprehensive relationship between atoms or structures is not learned properly and not explainable, and multiple graphs cannot be handled. In this paper, chemical reaction processes are formulated as translation processes. Both atoms and edges are mapped to vectors represent- ing the structural information. We employ the graph convolution layers to learn meaningful information of atom graphs, and further employ its variations, message passing networks (MPNN) and edge attention graph convolution network (EAGCN) to learn edge representations. Particularly, multi-view EAGCN groups and maps edges to a set of representations for the properties of the chemical bond between atoms from multiple views. Each bond is viewed from its atom type, bond type, distance and neighbor environment. The final node and edge representations are mapped to a sequence defined by the SMILES of the molecule and then fed to a decoder model with attention. To make full usage of multi-view information, we propose multi-view attention model to handle self correlation inside each atom or edge, and mutual correlation between edges and atoms, both of which are important in chemical reaction processes. We have evaluated our method on the standard benchmark datasets (that have been used by all the prior works), and the results show that edge embedding with multi-view attention achieves superior accuracy compared to existing techniques. 
    more » « less
  8. We consider the problem of resource provisioning for real-time cyber-physical applications in an open system environment where there does not exist a global resource scheduler that has complete knowledge of the real-time performance requirements of each individual application that shares the resources with the other applications. Regularity-based Resource Partition (RRP) model is an effective strategy to hierarchically partition and assign various resource slices among the applications. However, RRP model does not consider changes in resource requests from the applications at run time. To allow for the run time adaptation to change resource requirements, we consider in this paper the issues in online resource partition reconfiguration, including semantics issues that arise in configuration transitions that may cause application failures. Based on the reconfiguration semantics, we study the online resource reconfigurability problem under the RRP model where the availability factors of resource partitions may be reconfigured during run time. We formalize the Dynamic Partition Reconfiguration (DPR) problem and provide a solution to this problem. Extensive experiments have been conducted to evaluate the performance of the proposed approach in different scenarios. We also present a case study using the autonomous F1/10 model car; the controller of the F1/10 car requires resource adaptation to satisfy the computing needs of its PID controller and vision system under different operating conditions. Our implementation demonstrates the effectiveness and benefit of online resource partition reconfiguration using the DPR approach in a real system. 
    more » « less
  9. Graph sparsification has been used to improve the computational cost of learning over graphs, e.g., Laplacian-regularized estimation and graph semi-supervised learning (SSL). However, when graphs vary over time, repeated sparsification requires polynomial order computational cost per update. We propose a new type of graph sparsification namely fault-tolerant (FT) sparsification to significantly reduce the cost to only a constant. Then the computational cost of subsequent graph learning tasks can be significantly improved with limited loss in their accuracy. In particular, we give theoretical analyze to upper bound the loss in the accuracy of the subsequent Laplacian-regularized estimation and graph SSL, due to the FT sparsification. In addition, FT spectral sparsification can be generalized to FT cut sparsification, for cut-based graph learning. Extensive experiments have confirmed the computational efficiencies and accuracies of the proposed methods for learning on dynamic graphs. 
    more » « less