Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although graph convolutional networks (GCNs) that extend the convolution operation from images to graphs have led to competitive performance, the existing GCNs are still difficult to handle a variety of applications, especially cheminformatics problems. Recently multiple GCNs are applied to chemical compound structures which are represented by the hydrogen-depleted molecular graphs of different size. GCNs built for a binary adjacency matrix that reflects the connectivity among nodes in a graph do not account for the edge consistency in multiple molecular graphs, that is, chemical bonds (edges) in different molecular graphs can be similar due to the similar enthalpy and interatomicmore »Free, publicly-accessible full text available July 20, 2022
-
Time series forecasting is an extensively studied subject in statistics, economics, and computer science. Exploration of the correlation and causation among the variables in a multivariate time series shows promise in enhancing the performance of a time series model. When using deep neural networks as forecasting models, we hypothesize that exploiting the pairwise information among multiple (multivariate) time series also improves their forecast. If an explicit graph structure is known, graph neural networks (GNNs) have been demonstrated as powerful tools to exploit the structure. In this work, we propose learning the structure simultaneously with the GNN if the graph ismore »
-
Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multi-view data. Multi-view clustering, that clusters subjects into subgroups using multi-view data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar with machinemore »
-
Abstract—Materials Genomics initiative has the goal of rapidly synthesizing materials with a given set of desired properties using data science techniques. An important step in this direction is the ability to predict the outcomes of complex chemical reactions. Some graph-based feature learning algorithms have been proposed recently. However, the comprehensive relationship between atoms or structures is not learned properly and not explainable, and multiple graphs cannot be handled. In this paper, chemical reaction processes are formulated as translation processes. Both atoms and edges are mapped to vectors represent- ing the structural information. We employ the graph convolution layers to learnmore »
-
We consider the problem of resource provisioning for real-time cyber-physical applications in an open system environment where there does not exist a global resource scheduler that has complete knowledge of the real-time performance requirements of each individual application that shares the resources with the other applications. Regularity-based Resource Partition (RRP) model is an effective strategy to hierarchically partition and assign various resource slices among the applications. However, RRP model does not consider changes in resource requests from the applications at run time. To allow for the run time adaptation to change resource requirements, we consider in this paper the issuesmore »
-
Graph sparsification has been used to improve the computational cost of learning over graphs, e.g., Laplacian-regularized estimation and graph semi-supervised learning (SSL). However, when graphs vary over time, repeated sparsification requires polynomial order computational cost per update. We propose a new type of graph sparsification namely fault-tolerant (FT) sparsification to significantly reduce the cost to only a constant. Then the computational cost of subsequent graph learning tasks can be significantly improved with limited loss in their accuracy. In particular, we give theoretical analyze to upper bound the loss in the accuracy of the subsequent Laplacian-regularized estimation and graph SSL, duemore »
-
In most process control systems nowadays, process measurements are periodically collected and archived in historians. Analytics applications process the data, and provide results offline or in a time period that is considerably slow in comparison to the performance of many manufacturing processes. Along with the proliferation of Internet-of-Things (IoT) and the introduction of "pervasive sensors" technology in process industries, increasing number of sensors and actuators are installed in process plants for pervasive sensing and control, and the volume of produced process data is growing exponentially. To digest these data and meet the ever-growing requirements to increase production efficiency and improvemore »