As one of the most important research topics in the unsupervised learning field, Multi-View Clustering (MVC) has been widely studied in the past decade and numerous MVC methods have been developed. Among these methods, the recently emerged Graph Neural Networks (GNN) shine a light on modeling both topological structure and node attributes in the form of graphs, to guide unified embedding learning and clustering. However, the effectiveness of existing GNN-based MVC methods is still limited due to the insufficient consideration in utilizing the self-supervised information and graph information, which can be reflected from the following two aspects: 1) most of these models merely use the self-supervised information to guide the feature learning and fail to realize that such information can be also applied in graph learning and sample weighting; 2) the usage of graph information is generally limited to the feature aggregation in these models, yet it also provides valuable evidence in detecting noisy samples. To this end, in this paper we propose Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering (SGDMC), which promotes the performance of GNN-based deep MVC models by making full use of the self-supervised information and graph information. Specifically, a novel attention-allocating approach that considers both the similarity of node attributes and the self-supervised information is developed to comprehensively evaluate the relevance among different nodes. Meanwhile, to alleviate the negative impact caused by noisy samples and the discrepancy of cluster structures, we further design a sample-weighting strategy based on the attention graph as well as the discrepancy between the global pseudo-labels and the local cluster assignment. Experimental results on multiple real-world datasets demonstrate the effectiveness of our method over existing approaches. 
                        more » 
                        « less   
                    
                            
                            A survey on multi-view clustering
                        
                    
    
            Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multi-view data. Multi-view clustering, that clusters subjects into subgroups using multi-view data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar with machine learning methods, we categorize them into generative and discriminative classes. In discriminative class, based on the way to integrate multiple views, we split it further into five groups: Common Eigenvector Matrix, Common Coefficient Matrix, Common Indicator Matrix, Direct Combination and Combination After Projection. Furthermore, we discuss the relationships between MVC and some related topics: multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated for practitioners. Some commonly used multi-view datasets are introduced and several representative MVC algorithms from each group are run to conduct the comparison to analyze how and why they perform on those datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1718738
- PAR ID:
- 10253613
- Date Published:
- Journal Name:
- IEEE Transactions on Artificial Intelligence
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Multi-View Clustering (MVC) aims to find the cluster structure shared by multiple views of a particular dataset. Existing MVC methods mainly integrate the raw data from different views, while ignoring the high-level information. Thus, their performance may degrade due to the conflict between heterogeneous features and the noises existing in each individual view. To overcome this problem, we propose a novel Multi-View Ensemble Clustering (MVEC) framework to solve MVC in an Ensemble Clustering (EC) way, which generates Basic Partitions (BPs) for each view individually and seeks for a consensus partition among all the BPs. By this means, we naturally leverage the complementary information of multi-view data in the same partition space. Instead of directly fusing BPs, we employ the low-rank and sparse decomposition to explicitly consider the connection between different views and detect the noises in each view. Moreover, the spectral ensemble clustering task is also involved by our framework with a carefully designed constraint, making MVEC a unified optimization framework to achieve the final consensus partition. Experimental results on six real-world datasets show the efficacy of our approach compared with both MVC and EC methods.more » « less
- 
            In this paper, we propose a deep multi-Task learning model based on Adversarial-and-COoperative nets (TACO). The goal is to use an adversarial-and-cooperative strategy to decouple the task-common and task-specific knowledge, facilitating the fine-grained knowledge sharing among tasks. TACO accommodates multiple game players, i.e., feature extractors, domain discriminator, and tri-classifiers. They play the MinMax games adversarially and cooperatively to distill the task-common and task-specific features, while respecting their discriminative structures. Moreover, it adopts a divide-and-combine strategy to leverage the decoupled multi-view information to further improve the generalization performance of the model. The experimental results show that our proposed method significantly outperforms the state-of-the-art algorithms on the benchmark datasets in both multi-task learning and semi-supervised domain adaptation scenarios.more » « less
- 
            null (Ed.)Collecting large annotated datasets in Remote Sensing is often expensive and thus can become a major obstacle for training advanced machine learning models. Common techniques of addressing this issue, based on the underlying idea of pre-training the Deep Neural Networks (DNN) on freely available large datasets, cannot be used for Remote Sensing due to the unavailability of such large-scale labeled datasets and the heterogeneity of data sources caused by the varying spatial and spectral resolution of different sensors. Self-supervised learning is an alternative approach that learns feature representation from unlabeled images without using any human annotations. In this paper, we introduce a new method for land cover mapping by using a clustering-based pretext task for self-supervised learning. We demonstrate the effectiveness of the method on two societally relevant applications from the aspect of segmentation performance, discriminative feature representation learning, and the underlying cluster structure. We also show the effectiveness of the active sampling using the clusters obtained from our method in improving the mapping accuracy given a limited budget of annotating.more » « less
- 
            Human context recognition (HCR) using sensor data is a crucial task in Context-Aware (CA) applications in domains such as healthcare and security. Supervised machine learning HCR models are trained using smartphone HCR datasets that are scripted or gathered in-the-wild. Scripted datasets are most accurate because of their consistent visit patterns. Supervised machine learning HCR models perform well on scripted datasets but poorly on realistic data. In-the-wild datasets are more realistic, but cause HCR models to perform worse due to data imbalance, missing or incorrect labels, and a wide variety of phone placements and device types. Lab-to-field approaches learn a robust data representation from a scripted, high-fidelity dataset, which is then used for enhancing performance on a noisy, in-the-wild dataset with similar labels. This research introduces Triplet-based Domain Adaptation for Context REcognition (Triple-DARE), a lab-to-field neural network method that combines three unique loss functions to enhance intra-class compactness and inter-class separation within the embedding space of multi-labeled datasets: (1) domain alignment loss in order to learn domain-invariant embeddings; (2) classification loss to preserve task-discriminative features; and (3) joint fusion triplet loss. Rigorous evaluations showed that Triple-DARE achieved 6.3% and 4.5% higher F1-score and classification, respectively, than state-of-the-art HCR baselines and outperformed non-adaptive HCR models by 44.6% and 10.7%, respectively.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    