skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal dynamics of encroaching tall vegetation in timberline ecotone of the Polar Urals Region, Russia
Abstract Previous studies discovered a spatially heterogeneous expansion of Siberian larch into the tundra of the Polar Urals (Russia). This study reveals that the spatial pattern of encroachment of tree stands is related to environmental factors including topography and snow cover. Structural and allometric characteristics of trees, along with terrain elevation and snow depth were collected along a transect 860 m long and 80 m wide. Terrain curvature indices, as representative properties, were derived across a range of scales in order to characterize microtopography. A density-based clustering method was used here to analyze the spatial and temporal patterns of tree stems distribution. Results of the topographic analysis suggest that trees tend to cluster in areas with convex surfaces. The clustering analysis also indicates that the patterns of tree locations are linked to snow distribution. Records from the earliest campaign in 1960 show that trees lived mainly at the middle and bottom of the transect across the areas of high snow depth. As trees expanded uphill following a warming climate trend in recent decades, the high snow depth areas also shifted upward creating favorable conditions for recent tree growth at locations that were previously covered with heavy snow. The identified landscape signatures of increasing tall vegetation, and the effects of microtopography and snow may facilitate the understanding of treeline dynamics at larger scales.  more » « less
Award ID(s):
1724633 1725654 1724786
PAR ID:
10361263
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
1
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 014017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Patterns of alpine plant productivity are extremely variable in space and time. Complex topography drives variations in temperature, wind, and solar radiation. Surface and subsurface flow paths route water between landscape patches. Redistribution of snow creates scour zones and deep drifts, which drives variation in water availability and growing season length. Hence, the distribution of snow likely plays a central role in patterns of alpine plant productivity. Given that these processes operate at sub‐1 m to sub‐10 m spatial scales and are dynamic across daily to weekly time scales, historical studies using manual survey techniques have not afforded a comprehensive assessment of the influence of snow distribution on plant productivity. To address this knowledge gap, we used weekly estimates of normalised difference vegetation index (NDVI), snow extent, and peak snow depth, acquired from drone surveys at 25 cm resolution. We derived six snowpack‐related and topographic variables that may influence vegetation productivity and analysed these with respect to the timing and magnitude of peak productivity. Peak NDVI and peak NDVI timing were most highly correlated with maximum snow depth, and snow‐off‐date. We observed up to a ~30% reduction in peak NDVI for areas with deeper and later snow cover, and a ~11‐day delay in the timing of peak NDVI in association with later snow‐off‐date. Our findings leverage a novel approach to quantify the importance of snow distribution in driving alpine vegetation productivity and provide a space for time proxy of potential changes in a warmer, lower snow future. 
    more » « less
  2. Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light detection and ranging (LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has generally been poorer precision in forested areas. At a constant flight speed, the poorest precision within forests is observed beneath tree canopies that retain foliage into or through winter. The precision of lidar-derived elevation products is improved by increasing the sample size of ground returns but doing so reduces the spatial coverage of a mission due to limitations of battery power. We address the influence of flight speed on ground return density for baseline and snow-covered conditions and the subsequent effect on precision of snow depth estimates across a mixed landscape, while evaluating trade-offs between precision and bias. Prior to and following a snow event in December 2020, UAS flights were conducted at four different flight speeds over a region consisting of three contrasting land types: (1) open field, (2) deciduous forest, (3) conifer forest. For all cover types, we observed significant improvements in precision as flight speeds were reduced to 2 m s−1, as well as increases in the area over which a 2 cm snow depth precision was achieved. On the other hand, snow depth estimate differences were minimized at baseline flight speeds of 2 m s−1 and 4 m s−1 and snow-on flight speeds of 6 m s−1 over open fields and between 2 and 4 m s−1 over forest areas. Here, with consideration to precision and estimate bias within each cover type, we make recommendations for ideal flight speeds based on survey ground conditions and vegetation cover. 
    more » « less
  3. Climate warming in alpine regions is changing patterns of water storage, a primary control on alpine plant ecology, biogeochemistry, and water supplies to lower elevations. There is an outstanding need to determine how the interacting drivers of precipitation and the critical zone (CZ) dictate the spatial pattern and time evolution of soil water storage. In this study, we developed an analytical framework that combines intensive hydrologic measurements and extensive remotely-sensed observations with statistical modeling to identify areas with similar temporal trends in soil water storage within, and predict their relationships across, a 0.26 km 2 alpine catchment in the Colorado Rocky Mountains, U.S.A. Repeat measurements of soil moisture were used to drive an unsupervised clustering algorithm, which identified six unique groups of locations ranging from predominantly dry to persistently very wet within the catchment. We then explored relationships between these hydrologic groups and multiple CZ-related indices, including snow depth, plant productivity, macro- (10 2 ->10 3 m) and microtopography (<10 0 -10 2 m), and hydrological flow paths. Finally, we used a supervised machine learning random forest algorithm to map each of the six hydrologic groups across the catchment based on distributed CZ properties and evaluated their aggregate relationships at the catchment scale. Our analysis indicated that ~40–50% of the catchment is hydrologically connected to the stream channel, lending insight into the portions of the catchment that likely dominate stream water and solute fluxes. This research expands our understanding of patch-to-catchment-scale physical controls on hydrologic and biogeochemical processes, as well as their relationships across space and time, which will inform predictive models aimed at determining future changes to alpine ecosystems. 
    more » « less
  4. Abstract Snow duration in post‐fire forests is influenced by neighbourhoods of trees, snags, and deadwood. We used annually resolved, spatially explicit tree and tree mortality data collected in an old‐growth, mixed‐conifer forest in the Sierra Nevada, California, that burned at low to moderate severity to calculate 10 tree neighbourhood metrics for neighbourhoods up to 40 m from snow depth and snow disappearance sampling points. We developed two linear mixed models, predicting snow disappearance timing as a function of tree neighbourhood, litter density, and simulated incoming solar radiation, and two multiple regression models explaining variation in snow depth as a function of tree neighbourhood. Higher densities of post‐fire large‐diameter snags within 10 m of a sampling point were related to higher snow depth (indicating reduced snow interception). Higher densities of large‐diameter trees within 5 m and larger amounts of litter were associated with shorter snow duration (indicating increased longwave radiation emittance and accelerated snow albedo decay). However, live trees with diameters >60 cm within 10 m of a snow disappearance sampling point were associated with a longer‐lasting spring snowpack. This suggests that, despite the local effects of canopy interception and emitted longwave radiation from boles of large trees, shading from their canopies may prolong snow duration over a larger area. Therefore, conservation of widely spaced, large‐diameter trees is important in old‐growth forests because they are resistant to fire and can enhance the seasonal duration of snowmelt. 
    more » « less
  5. Abstract Mountain winds are the driving force behind snow accumulation patterns in mountainous catchments, making accurate wind fields a prerequisite to accurate simulations of snow depth for ecological or water resource applications. In this study, we examine the effect that wind fields derived from different coarse data sets and downscaling schemes has on simulations of modeled snow depth at resolutions suitable for basin‐scale modeling (>50 m). Simulations are run over the Tuolumne River Basin, CA for the accumulation season of Water Year 2017 using the distributed snow model, SnowModel. We derived wind fields using observations from either sensor networks, the North American Land Data Assimilation System (12.5 km resolution), or High‐Resolution Rapid Refresh (HRRR, 3 km resolution) data, and downscaled using terrain‐based multipliers (MicroMet), a mass‐conserving flow model (WindNinja), or bilinear interpolation. Two wind fields derived from 3 km HRRR data and downscaled with respect to terrain produced snow depth maps that best matched observations of snow depth from airborne LiDAR. We find that modeling these wind fields at 100 and 50 m resolutions do not produce improvements in simulated snow depth when compared to wind fields modeled at a 150 m resolution due to their inability to represent wind dynamics at these scales. For input to distributed snow models at the basin‐scale, we recommend deriving wind fields from high resolution numerical weather prediction model output and downscaling with respect to terrain. Future studies should compare suspension schemes used in blowing snow models and investigate wind downscaling schemes of complexity between statistical and fluid dynamic models. 
    more » « less