Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
What we emphasize and reward on assessments signals to students what matters to us. Accordingly, a great deal of scholarship in chemistry education has focused on defining the sorts of performances worth assessing. Here, we unpack observations we made while analyzing what “success” meant across three large-enrollment general chemistry environments. We observed that students enrolled in two of the three environments could succeed without ever connecting atomic/molecular behavior to how and why phenomena happen. These environments, we argue, were not really “chemistry classes” but rather opportunities for students to gain proficiency with a jumble of skills and factual recall. However, one of the three environments dedicated 14–57% of points on exams to items with the potential to engage students in using core ideas (e.g., energy, bonding interactions) to predict, explain, or model observable events. This course, we argue, is more aligned with the intellectual work of the chemical sciences than the other two. If our courses assess solely (or largely) decontextualized skills and factual recall we risk (1) gating access to STEM careers on the basis of facility with skills most students will never use outside the classroom and (2) never allowing students to experience the tremendous predictive and explanatorymore »
-
The ability to predict macroscopic properties using a compound's chemical structure is an essential idea for chemistry as well as other disciplines such as biology. In this study we investigate how different levels of interventions impact the components of students’ explanations (claims, evidence, and reasoning) of structure–property relationships, particularly related to boiling point trends. These interventions, aligned with Three-Dimensional Learning (3DL), were investigated with four different cohorts of students: Cohort 1 – a control group of students enrolled in an active learning general chemistry course; Cohort 2 – students enrolled in the same active learning general chemistry course but given Intervention 1 (a 3DL worksheet administered during class time); Cohort 3 – students enrolled in the same active learning general chemistry course but given Intervention 1 and Intervention 2 (a 3DL course exam question administered after instruction); and Cohort 4 – a reference group of students enrolled in a transformed active learning general chemistry curriculum in which 3DL is an essential feature and includes Intervention 1 and Intervention 2 as part of the curriculum. We found that Cohort 2 students (with the 3DL worksheet intervention) were more likely than the control group (Cohort 1) to correctly predict the compound withmore »
-
We evaluate the impact of an institutional effort to transform undergraduate science courses using an approach based on course assessments. The approach is guided by A Framework for K-12 Science Education and focuses on scientific and engineering practices, crosscutting concepts, and core ideas, together called three-dimensional learning. To evaluate the extent of change, we applied the Three-dimensional Learning Assessment Protocol to 4 years of chemistry, physics, and biology course exams. Changes in exams differed by discipline and even by course, apparently depending on an interplay between departmental culture, course organization, and perceived course ownership, demonstrating the complex nature of transformation in higher education. We conclude that while transformation must be supported at all organizational levels, ultimately, change is controlled by factors at the course and departmental levels.