skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1728321

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. The analysis of multiple dependent degradation processes is a challenging research work in the reliability field, especially for complex degradation with random jumps. To integrally handle the jump uncertainties in degradation and the dependence among degradation processes, we construct multi-dimensional Lévy processes to describe multiple dependent degradation processes in engineering systems. The evolution of each degradation process can be modeled by a one-dimensional Lévy subordinator with a marginal Lévy measure, and the dependence among all dimensions can be described by Lévy copulas and the associated multiple-dimensional Lévy measure. This Lévy measure is obtained from all its one-dimensional marginal Lévy measures and the Lévy copula. We develop the Fokker-Planck equations to describe the probability density in stochastic systems. The Laplace transforms of both reliability function and lifetime moments are derived. Numerical examples are used to demonstrate our models in lifetime analysis. 
    more » « less