Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
NA (Ed.)Coastal wetlands are vulnerable to accelerated sea-level rise, yet knowledge about their extent and distribution is often limited. We developed a land cover classification of wetlands in the coastal plains of the southern United States along the Gulf of Mexico (Texas, Louisiana, Mississippi, Alabama, and Florida) using 6161 very-high (2 m per pixel) resolution WorldView-2 and WorldView-3 satellite images from 2012 to 2015. Area extent estimations were obtained for the following vegetated classes: marsh, scrub, grass, forested upland, and forested wetland, located in elevation brackets between 0 and 10 m above sea level at 0.1 m intervals. Sea-level trends were estimated for each coastal state using tide gauge data collected over the period 1983–2021 and projected for 2100 using the trend estimated over that period. These trends were considered conservative, as sea level rise in the region accelerated between 2010 and 2021. Estimated losses in vegetation area due to sea level rise by 2100 are projected to be at least 12,587 km2, of which 3224 km2 would be coastal wetlands. Louisiana is expected to suffer the largest losses in vegetation (80%) and coastal wetlands (75%) by 2100. Such high-resolution coastal mapping products help to guide adaptation plans in the region, including planning for wetland conservation and coastal development.more » « lessFree, publicly-accessible full text available June 1, 2025
-
NA (Ed.)Abstract. Measurements of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) concentrations are used to characterize the dissolved organic matter (DOM) pool and are important components of biogeochemical cycling in the coastal ocean. Here, we present the first edition of a global database (CoastDOM v1; available at https://doi.org/10.1594/PANGAEA.964012, Lønborg et al., 2023) compiling previously published and unpublished measurements of DOC, DON, and DOP in coastal waters. These data are complemented by hydrographic data such as temperature and salinity and, to the extent possible, other biogeochemical variables (e.g. chlorophyll a, inorganic nutrients) and the inorganic carbon system (e.g. dissolved inorganic carbon and total alkalinity). Overall, CoastDOM v1 includes observations of concentrations from all continents. However, most data were collected in the Northern Hemisphere, with a clear gap in DOM measurements from the Southern Hemisphere. The data included were collected from 1978 to 2022 and consist of 62 338 data points for DOC, 20 356 for DON, and 13 533 for DOP. The number of measurements decreases progressively in the sequence DOC > DON > DOP, reflecting both differences in the maturity of the analytical methods and the greater focus on carbon cycling by the aquatic science community. The global database shows that the average DOC concentration in coastal waters (average ± standard deviation (SD): 182±314 µmol C L−1; median: 103 µmol C L−1) is 13-fold higher than the average coastal DON concentration (13.6±30.4 µmol N L−1; median: 8.0 µmol N L−1), which is itself 39-fold higher than the average coastal DOP concentration (0.34±1.11 µmol P L−1; median: 0.18 µmol P L−1). This dataset will be useful for identifying global spatial and temporal patterns in DOM and will help facilitate the reuse of DOC, DON, and DOP data in studies aimed at better characterizing local biogeochemical processes; closing nutrient budgets; estimating carbon, nitrogen, and phosphorous pools; and establishing a baseline for modelling future changes in coastal waters.more » « less
-
Simpson, P. (Ed.)http://dx.doi.org/10.25607/OBP-1903 The goal of the sixth Ocean Best Practices System workshop (OBPS VI) was to guide the development of best practices and operating practices, to promote their documentation, and to share them widely using the OBPS. The workshop featured two plenaries held in two time zones each and 19 theme sessions held over two weeks. These theme sessions were planned and held by separate communities of practice in ocean science, engineering, and technology. The workshop attracted the attention of a total of 1152 registrants from around the world, with some 600 people attending across time zones in the theme sessions and the plenaries. The workshop allowed the different communities of practice to focus on the creation, documentation and use of best practices working with members of the OBPS Steering Group. It drew on the experience of OBPS User Groups and stakeholders and provided an opportunity to gather feedback on how the system should evolve to better fulfil each community’s vision.more » « less
-
Abstract People depend on biodiversity—the heart of healthy ecosystems—in many ways and every day of our lives. Yet usable knowledge of marine life is a missing link in the way we have designed marine observing and information systems. We lack critical biodiversity information to inform sustainable development from local levels to global scales—information on Essential Ocean Variables such as how many types and how much plankton, seagrasses, macro-algae, mangroves, corals and other invertebrates, fish, turtles, birds, and mammals are in any location at any one time, the value we may derive from that combination of organisms, and how this is changing with time and why. Marine Life 2030 is a program endorsed by the Ocean Decade to develop a coordinated system to deliver such actionable, transdisciplinary knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. Marine Life 2030 is an open network that invites partners to join us with ideas and energy to connect communities, programs, and sectors into a global, interoperable network, transforming the observation and forecasting of marine life for the future and for the benefit of all people.more » « less
-
Blasiak, Robert (Ed.)Abstract Marine Life 2030 is a programme endorsed by the United Nations Decade of Ocean Science for Sustainable Development (the Ocean Decade) to establish a globally coordinated system that delivers knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. It is an open network to unite existing and new programmes into a co-designed, global framework to share information on methods, standards, observations, and applications. Goals include realizing interoperable information and transforming the observation and forecasting of marine life for the benefit of all people. Co-design, sharing local capacity, and coordination between users of ocean resources across regions is fundamental to enable sustainable use and conservation. A novel, bottom-up networking structure is now engaging members of the ocean community to address local issues, with Marine Life 2030 facilitating the linkage between groups across different regions to meet the challenges of the Ocean Decade. A variety of metrics, including those proposed by the Group on Earth Observations, will be used to track the success of the co-design process.more » « less
-
The UN Decade of Ocean Science for Sustainable Development (Ocean Decade) challenges marine science to better inform and stimulate social and economic development while conserving marine ecosystems. To achieve these objectives, we must make our diverse methodologies more comparable and interoperable, expanding global participation and foster capacity development in ocean science through a new and coherent approach to best practice development. We present perspectives on this issue gleaned from the ongoing development of the UNESCO Intergovernmental Oceanographic Commission (IOC) Ocean Best Practices System (OBPS). The OBPS is collaborating with individuals and programs around the world to transform the way ocean methodologies are managed, in strong alignment with the outcomes envisioned for the Ocean Decade. However, significant challenges remain, including: (1) the haphazard management of methodologies across their lifecycle, (2) the ambiguous endorsement of what is “best” and when and where one method may be applicable vs. another, and (3) the inconsistent access to methodological knowledge across disciplines and cultures. To help address these challenges, we recommend that sponsors and leaders in ocean science and education promote consistent documentation and convergence of methodologies to: create and improve context-dependent best practices; incorporate contextualized best practices into Ocean Decade Actions; clarify who endorses which method and why; create a global network of complementary ocean practices systems; and ensure broader consistency and flexibility in international capacity development.more » « less
-
This perspective outlines how authors of ocean methods, guides, and standards can harmonize their work across the scientific community. We reflect on how documentation practices can be linked to modern information technologies to improve discoverability, interlinkages, and thus the evolution of distributed methods into common best practices within the ocean community. To show how our perspectives can be turned into action, we link them to guidance on using the IOC-UNESCO Ocean Best Practice System to support increased collaboration and reproducibility during and beyond the UN Decade of Ocean Sciences for Sustainable Development.more » « less