- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0002000004000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Qixing (3)
-
Savva, Manolis (2)
-
Bajaj, Chandrajit (1)
-
Chang, Angel (1)
-
Chi, Hyung-gun (1)
-
Fellbaum, Christiane (1)
-
Gan, Chuang (1)
-
Guibas, Leonidas (1)
-
Hu, Ruizhen (1)
-
Hu, Xiao (1)
-
Huang, Jingwei (1)
-
Kaick, Oliver Van (1)
-
Karpur, Arjun (1)
-
Kim, Sangpil (1)
-
Krishna, Pranav (1)
-
Liang, Zhenxiao (1)
-
Luo, Linjie (1)
-
Mago, Rishi (1)
-
Niesner, Matthias (1)
-
Ramani, Karthik (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Huang, Qixing; Liang, Zhenxiao; Wang, Haoyun; Zuo, Simiao; Bajaj, Chandrajit (, ACM Transactions on Graphics)
-
Zhou, Xingyi; Karpur, Arjun; Gan, Chuang; Luo, Linjie; Huang, Qixing (, European Conference on Computer Vision)In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment term to regularize predictions in the target domain. The resulting loss function can be effectively optimized via alternating minimization. We demonstrate the effectiveness of our approach on real datasets and present experimental results showing that our approach is superior to state-of-the-art general-purpose domain adaptation techniques.more » « less
-
Huang, Jingwei; Zhou, Yichao; Niesner, Matthias; Shewchuk, Richard; Guibas, Leonidas (, Computer graphics forum)
-
Hu, Ruizhen; Savva, Manolis; Kaick, Oliver Van (, Computer graphics forum)
-
Chang, Angel; Mago, Rishi; Krishna, Pranav; Savva, Manolis; Fellbaum, Christiane (, Computer graphics forum)
An official website of the United States government

Full Text Available