skip to main content


Search for: All records

Award ID contains: 1734999

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A recent population collapse of eastern Bering Sea (EBS) snow crab (Chionoecetes opilio) led to the first-ever closure of the snow crab fishery in 2022. The population collapse, caused, in part, by unprecedented warming, was preceded by peaks in juvenile snow crab density (2018) and bitter crab disease (BCD, Hematodinium sp.; 2016), a fatal crustacean disease. Annual bottom trawl surveys in the EBS show high year-to-year spatiotemporal variation in BCD-infected crab, yet it remains unclear what ecological drivers might explain the variation. We used statistical models of BCD presence/absence to examine the relative importance of intrinsic and extrinsic factors as drivers of BCD. We found a dome-shaped relationship between temperature and BCD presence, and results suggest that 2–4°C bottom temperatures are more likely to support BCD. Matching with past work across the globe, we find that stations with high population density of small, new shell crab are most likely to be BCD-positive. While our work highlights the challenges of disease monitoring in the EBS, our results indicate that indirect management measures related to snow crab rebuilding and recruitment may be more appropriate than directed fisheries management in mitigating BCD impacts.

     
    more » « less
  2. Abstract

    Notothenioidei fishes have evolved under stable cold temperatures; however, ocean conditions are changing globally, with polar regions poised to experience the greatest changes in environmental factors, such as warming. These stressors have the potential to dramatically affect energetic demands, and the persistence of the notothenioids will be dependent on metabolic capacity, or the ability to match energy supply with energy demand, to restore homeostasis in the face of changing climate conditions. In this study we examined aerobic metabolic capacity in three species,Trematomus bernacchii,T. pennelliiandT. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. Respiratory capacity differed among the adult notothenioids in this study, with greater oxidative phosphorylation (OXPHOS) respiration in the pelagicT. newnesithan the benthicT. bernacchiiandT. pennellii. The variation in mitochondrial respiratory capacity was likely driven by differences in the mitochondrial content, as measured by citrate synthase activity, which was the highest inT. newnesi. In addition to high OXPHOS,T. newnesiexhibited lower LEAK respiration, resulting in greater mitochondrial efficiency than eitherT. bernacchiiorT. pennellii. Life stage largely had an effect on mitochondrial efficiency and excess complex IV capacity, but there were little differences in OXPHOS respiration and electron transfer capacity, pointing to a lack of significant differences in the metabolic capacity between juveniles and adults. Overall, these results demonstrate species-specific differences in cardiac metabolic capacity, which may influence the acclimation potential of notothenioid fishes to changing environmental conditions.

     
    more » « less
  3. Abstract

    Major oil spills immensely impact the environment and society. Coastal fishery-dependent communities are especially at risk as their fishing grounds are susceptible to closure because of seafood contamination threat. During the Deepwater Horizon (DWH) disaster for example, vast areas of the Gulf of Mexico (GoM) were closed for fishing, resulting in coastal states losing up to a half of their fishery revenues. To predict the effect of future oil spills on fishery-dependent communities in the GoM, we develop a novel framework that combines a state-of-the-art three-dimensional oil-transport model with high-resolution spatial and temporal data for two fishing fleets—bottom longline and bandit-reel—along with data on the social vulnerability of coastal communities. We demonstrate our approach by simulating spills in the eastern and western GoM, calibrated to characteristics of the DWH spill. We find that the impacts of the eastern and western spills are strongest in the Florida and Texas Gulf coast counties respectively both for the bandit-reel and the bottom longline fleets. We conclude that this multimodal spatially explicit quantitative framework is a valuable management tool for predicting the consequences of oil spills at locations throughout the Gulf, facilitating preparedness and efficient resource allocation for future oil-spill events.

     
    more » « less
  4. Abstract

    Marine Protected Areas (MPAs) are being implemented worldwide, yet there are few cases where managers make specific predictions of the response of previously harvested populations to MPA implementation.

    Such predictions are needed to evaluate whether MPAs are working as expected, and if not, why. This evaluation is necessary to perform adaptive management, identifying whether and when adjustments to management might be necessary to achieve MPA goals.

    Using monitoring data and population models, we quantified expected responses of targeted species to MPA implementation and compared them to monitoring data.

    The model required two factors to explain observed responses in MPAs: (a) pre‐MPA harvest rates, which can vary at local spatial scales, and (b) recruitment variability before and after MPA establishment. Low recruitment years before MPA establishment in our study system drove deviations from expected equilibrium population size distributions and introduced an additional time lag to response detectability.

    Synthesis and applications. We combined monitoring data and population models to show how (a) harvest rates prior to Marine Protected Area (MPA) implementation, (b) variability in recruitment, and (c) initial population size structure determine whether a response to MPA establishment is detectable. Pre‐MPA harvest rates across MPAs plays a large role in MPA response detectability, demonstrating the importance of measuring this poorly known parameter. While an intuitive expectation is for response detectability to depend on recruitment variability and stochasticity in population trajectories after MPA establishment, we address the overlooked role of recruitment variability before MPA establishment, which alters the size structure at the time of MPA establishment. These factors provide MPA practitioners with reasons whether or not MPAs may lead to responses of targeted species. Our overall approach provides a framework for a critical step of adaptive management.

     
    more » « less
  5. Abstract. Global trends of ocean warming, deoxygenation, and acidification are not easily extrapolated to coastal environments. Local factors, including intricate hydrodynamics, high primary productivity, freshwater inputs, and pollution, can exacerbate or attenuate global trends and produce complex mosaics of physiologically stressful or favorable conditions for organisms. In the California Current System (CCS), coastal oceanographic monitoring programs document some of this complexity; however, data fragmentation and limited data availability constrain our understanding of when and where intersecting stressful temperatures, carbonate system conditions, and reduced oxygen availability manifest. Here, we undertake a large data synthesis to compile, format, and quality-control publicly available oceanographic data from the US West Coast to create an accessible database for coastal CCS climate risk mapping, available from the National Centers for Environmental Information (accession 0277984) at https://doi.org/10.25921/2vve-fh39 (Kennedy et al., 2023). With this synthesis, we combine publicly available observations and data contributed by the author team from synoptic oceanographic cruises, autonomous sensors, and shore samples with relevance to coastal ocean acidification and hypoxia (OAH) risk. This large-scale compilation includes 13.7 million observations from 66 sources and spans 1949 to 2020. Here, we discuss the quality and composition of the synthesized dataset, the spatial and temporal distribution of available data, and examples of potential analyses. This dataset will provide a valuable tool for scientists supporting policy- and management-relevant investigations including assessing regional and local climate risk, evaluating the efficacy and completeness of CCS monitoring efforts, and elucidating spatiotemporal scales of coastal oceanographic variability.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  6. Coll, Marta (Ed.)
    Abstract The efficacy of marine protected areas (MPAs) may be reduced when climate change disrupts the ecosystems and human communities around which they are designed. The effects of ocean warming on MPA functioning have received attention but less is known about how multiple climatic stressors may influence MPAs efficacy. Using a novel dataset incorporating 8.8 million oceanographic observations, we assess exposure to potentially stressful temperatures, dissolved oxygen concentrations, and pH levels across the California MPA network. This dataset covers more than two-thirds of California’s 124 MPAs and multiple biogeographic domains. However, spatial-temporal and methodological patchiness constrains the extent to which systematic evaluation of exposure is possible across the network. Across a set of nine well-monitored MPAs, the most frequently observed combination of stressful conditions was hypoxic conditions (<140 umol/kg) co-occurring with low pH (<7.75). Conversely, MPAs exposed most frequently to anomalously warm conditions were less likely to experience hypoxia and low pH, although exposure to hypoxia varied throughout the 2014–2016 marine heatwaves. Finally, we found that the spatial patterns of exposure to hypoxia and low pH across the MPA network remained stable across years. This multiple stressor analysis both confirms and challenges prior hypotheses regarding MPA efficacy under global environmental change. 
    more » « less
  7. Subsidies are widely criticized in fisheries management for promoting global fishing capacity growth and overharvesting. Scientists worldwide have thus called for a ban on “harmful” subsidies that artificially increase fishing profits, resulting in the recent agreement among members of the World Trade Organization to eliminate such subsidies. The argument for banning harmful subsidies relies on the assumption that fishing will be unprofitable after eliminating subsidies, incentivizing some fishermen to exit and others to refrain from entering. These arguments follow from open-access governance regimes where entry has driven profits to zero. Yet many modern-day fisheries are conducted under limited-access regimes that limit capacity and maintain economic profits, even without subsidies. In these settings, subsidy removal will reduce profits but perhaps without any discernable effect on capacity. Importantly, until now, there have been no empirical studies of subsidy reductions to inform us about their likely quantitative impacts. In this paper, we evaluate a policy reform that reduced fisheries subsidies in China. We find that China’s subsidy reductions accelerated the rate at which fishermen retired their vessels, resulting in reduced fleet capacity, particularly among older and smaller vessels. Notably, the reduction of harmful subsidies was only partly responsible for reducing fleet capacity; an increase in vessel retirement subsidies was also a necessary driver of capacity reduction. Our study demonstrates that the efficacy of removing harmful subsidies depends on the policy environment in which removals occur. 
    more » « less
  8. Abstract In restoration ecology, the Field of Dreams hypothesis posits that restoration efforts that create a suitable environment could lead to the eventual recovery of the remaining aspects of the ecosystem through natural processes. Natural processes following partial restoration has led to ecosystem recovery in both terrestrial and aquatic systems. However, understanding the efficacy of a “Field of Dreams” approach requires a comparison of different approaches to partial restoration in terms of spatial, temporal, and ecological scale with what would happen given more comprehensive restoration efforts. We explore the relative effect of partial restoration and ongoing recovery on restoration efficacy with a dynamical model based on temperate rocky reefs in Northern California. We analyze our model for both the ability and rate of bull kelp forest recovery under different restoration strategies. We compare the efficacy of a partial restoration approach with a more comprehensive restoration effort by exploring how kelp recovery likelihood and rate change with varying intensities of urchin removal and kelp outplanting over different time periods and spatial scales. We find that, in the case of bull kelp forests, setting more favorable initial conditions for kelp recovery by implementing both urchin harvesting and kelp outplanting at the start of the restoration project has a bigger impact on the kelp recovery rate than applying restoration efforts through a longer period of time. Therefore, partial restoration efforts, in terms of spatial and temporal scale, can be significantly more effective when applied across multiple ecological scales in terms of both the capacity and rate for achieving the target outcomes. 
    more » « less
  9. Fish in all the world's oceans exhibit variable body size and growth over time, with some populations exhibiting long-term declines in size. These patterns can be caused by a range of biotic, abiotic, and anthropogenic factors and impact the productivity of harvested populations. Within a given species, individuals often exhibit a range of life history strategies that may cause some groups to be buffered against change. One of the most studied declines in size-at-age has been in populations of salmon; Chinook salmon in the Northeast Pacific Ocean are the largest-bodied salmon species and have experienced long-term declines in size. Using long-term monitoring data, we develop novel size and growth models to link observed changes in Chinook size to life history traits and environmental variability. Our results identify three distinct trends in size across the 48 stocks in our study. Differences among populations are correlated with ocean distribution, migration timing, and freshwater residence. We provide evidence that trends are driven by interannual variation in certain oceanographic processes and competition with pink salmon.

     
    more » « less