skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drivers of bitter crab disease occurrence in eastern Bering Sea snow crab ( Chionoecetes opilio )
Abstract A recent population collapse of eastern Bering Sea (EBS) snow crab (Chionoecetes opilio) led to the first-ever closure of the snow crab fishery in 2022. The population collapse, caused, in part, by unprecedented warming, was preceded by peaks in juvenile snow crab density (2018) and bitter crab disease (BCD, Hematodinium sp.; 2016), a fatal crustacean disease. Annual bottom trawl surveys in the EBS show high year-to-year spatiotemporal variation in BCD-infected crab, yet it remains unclear what ecological drivers might explain the variation. We used statistical models of BCD presence/absence to examine the relative importance of intrinsic and extrinsic factors as drivers of BCD. We found a dome-shaped relationship between temperature and BCD presence, and results suggest that 2–4°C bottom temperatures are more likely to support BCD. Matching with past work across the globe, we find that stations with high population density of small, new shell crab are most likely to be BCD-positive. While our work highlights the challenges of disease monitoring in the EBS, our results indicate that indirect management measures related to snow crab rebuilding and recruitment may be more appropriate than directed fisheries management in mitigating BCD impacts.  more » « less
Award ID(s):
1734999
PAR ID:
10516241
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ICES Journal of Marine Science
Volume:
81
Issue:
6
ISSN:
1054-3139
Format(s):
Medium: X Size: p. 1073-1083
Size(s):
p. 1073-1083
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Blue crab (Callinectes sapidus) supports lucrative Mid‐Atlantic crustacean fisheries and plays an important role in estuarine ecology, so their larval transport and recruitment dynamics in the Maryland Coastal Bays system were investigated using simulated and observed surface drifters. Relative contributions of winds, tides, density gradients, and waves to larval recruitment success were identified during the spawning season, particularly under hurricane conditions in 2014. Based on temperature (e.g., 19–29°C) and salinity conditions (e.g., 23–33 PSU), particles representing virtual blue crab larvae were released into the model domain from early June to late October 2014. During the spawning season, variations in the larval recruitment success caused by wind speed and direction, tides (e.g., affecting through inlets), density gradients (e.g., salinity variations), and surface gravity waves were 17%, 4%, −9%, and 17%, respectively. During Hurricane Arthur (2014), variability of self‐recruitment success caused by density gradients are negligible while by other three factors are comparable at 3%–4%. Surface drifter experiments support the modeling results that larval recruitment success is strongly associated with the coastal circulation. The high (low) self‐recruitment success in the Assawoman and Chincoteague Bays (Sinepuxent Bay) is related to the locally weak (strong) circulation; released larvae escape from inlets are likely recruited to southern Fenwick and northern Assateague Islands, and the coastal regions outside the Chincoteague Inlet. Understanding physical factors influencing larval recruitment success helps resource managers make informed decisions about habitat restoration and harvest regulations, in addition to seafood‐related food security. 
    more » « less
  2. Abstract Blue crabs ( Callinectes sapidus ) are highly mobile, ecologically-important mesopredators that support multimillion-dollar fisheries along the western Atlantic Ocean. Understanding how blue crabs respond to coastal landscape change is integral to conservation and management, but such insights have been limited to a narrow range of habitats and spatial scales. We examined how local-scale to landscape-scale habitat characteristics and bathymetric features (channels and oceanic inlets) affect the relative abundance (catch per unit effort, CPUE) of adult blue crabs across a > 33 km 2 seagrass landscape in coastal Virginia, USA. We found that crab CPUE was 1.7 × higher in sparse (versus dense) seagrass, 2.4 × higher at sites farther from (versus nearer to) salt marshes, and unaffected by proximity to oyster reefs. The probability that a trapped crab was female was 5.1 × higher in sparse seagrass and 8 × higher near deep channels. The probability of a female crab being gravid was 2.8 × higher near seagrass meadow edges and 3.3 × higher near deep channels. Moreover, the likelihood of a gravid female having mature eggs was 16 × greater in sparse seagrass and 32 × greater near oceanic inlets. Overall, we discovered that adult blue crab CPUE is influenced by seagrass, salt marsh, and bathymetric features on scales from meters to kilometers, and that habitat associations depend on sex and reproductive stage. Hence, accelerating changes to coastal geomorphology and vegetation will likely alter the abundance and distribution of adult blue crabs, challenging marine spatial planning and ecosystem-based fisheries management. 
    more » « less
  3. null (Ed.)
    Abstract The Atlantic marsh fiddler crab, Minuca pugnax (Smith, 1870), is a climate migrant that recently expanded its range northward into the Gulf of Maine. We tracked the M. pugnax population within the Great Marsh, in northeastern Massachusetts, USA, since it was first detected in 2014 using burrow counts. Because burrow counts can overestimate fiddler-crab density, we used camera traps to determine the relationship between burrow densities and fiddler-crab densities in 2019. The burrow count surveys show a six-fold increase in the density of M. pugnax in the Great Marsh from 2014 to 2019. Results indicates that the fiddler-crab population in the expanded range is established and growing. Based on burrow counts, however, the density of M. pugnax in the expanded range (6 burrows m–2) remains much lower than those found in the historical range (up to 300 burrows m–2). Based on the camera traps, we determined that burrow counts overestimated fiddler-crab densities by 47% in 2019. There was, on average, one crab detected for every two burrows observed. This result suggests that estimates of densities of M. pugnax based on burrow counts should be reduced by half. Minuca pugnax is an ecosystem engineer that can influence saltmarsh functioning and the magnitude of that influence is related to its density. Our results imply that the populations of M. pugnax in the expanded range are currently having minor impacts on marshes relative to larger populations in the historical range, but their impact will increase as the populations grow. 
    more » « less
  4. In southern New England, rapid ocean warming over the past two decades has caused substantial redistributions of fishes, invertebrates, and the fisheries they support. The rapid emergence of the warm water-tolerant Jonah crab (Cancer borealis) fishery, once discarded as bycatch from the now declining lobster fishery, illustrates a prime example of climate-adaptive shifts in southern New England fisheries. However, limited data exist on the basic life history of Jonah crabs, despite their growing economic and societal value. This hinders ocean management capacity to meet multiple ecological, economic, and socio-cultural goals of sustainable harvest. Off the southern coast of Rhode Island, Jonah crabs are currently harvested in two fishery zones (inshore and offshore) delineated as holdovers from the lobster management zones. Jonah crabs landed in the offshore fishing zone are significantly larger, on average, than those landed in the inshore fishing zone. This presentation gives an overview of a study developed to test the hypothesis that these size differences reflect ontogenetic migration of Jonah crabs from the inshore to offshore fishing zones. To do this, we developed seasonally resolved isoscapes (isotope maps) of the region, which revealed distinct geospatial gradients in environmental stable isotope values between inshore and offshore necessary to track potential movement of Jonah crabs between fishing zones. We then used stable isotope analysis of three Jonah crab tissues with differential metabolic turnover times: the carapace (reflecting residence one year ago), muscle (reflecting residence averaged over the last ~4 months), and hepatopancreas (reflecting residence averaged over the last ~4 weeks) to construct an “isotopic clock” of residence throughout the regional isoscapes. This work provides key data on critical life history characteristics of the Jonah crab through a collaborative effort by scientists at the University of Rhode Island and the Rhode Island Department of Environmental Management to inform management decisions on this emerging climate-adaptive fishery. 
    more » « less
  5. Wilson, Melissa (Ed.)
    Abstract Horseshoe crabs, considered living fossils with a stable morphotype spanning ∼445 million years, are evolutionarily, ecologically, and biomedically important species experiencing rapid population decline. Of the four extant species of horseshoe crabs, the Atlantic horseshoe crab, Limulus polyphemus, has become an essential component of the modern medicine toolkit. Here, we present the first chromosome-level genome assembly, and the most contiguous and complete assembly to date, for L. polyphemus using nanopore long-read sequencing and chromatin conformation analysis. We find support for three horseshoe crab-specific whole-genome duplications, but none shared with Arachnopulmonata (spiders and scorpions). Moreover, we discovered tandem duplicates of endotoxin detection pathway components Factors C and G, identify candidate centromeres consisting of Gypsy retroelements, and classify the ZW sex chromosome system for this species and a sister taxon, Carcinoscorpius rotundicauda. Finally, we revealed this species has been experiencing a steep population decline over the last 5 million years, highlighting the need for international conservation interventions and fisheries-based management for this critical species. 
    more » « less