skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultra-thin sputter-deposited infrared rugate mirror for enhancing solar-to-thermal energy conversion
A dielectric mirror with high infrared reflection and high visible transmission, based on an easily fabricated stepped index rugate filter structure, is presented. Its fabrication involves sputtering depositions, using only two targets, to make five different material compositions. The ultra-wide reflection band is tunable in both position and width, adapting the thickness of the layers and eventually introducing chirped layers. When applied to evacuated solar thermal devices, efficiency improvements of up to 30% can be achieved, making this mirror an attractive solution for reducing radiative losses through the cold-side photon recycling mechanism.  more » « less
Award ID(s):
1735282
PAR ID:
10368535
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
2
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 230
Size(s):
Article No. 230
Sponsoring Org:
National Science Foundation
More Like this
  1. Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λoof 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation. 
    more » « less
  2. Polarization aberrations are found in most optical components due to a materials differing response to s- and p-polarizations. This differing response can manifest either as diattenuation, retardance, or both. Correction of polarization aberrations, such as these, are critical in many applications such as interferometry, polarimetry, display, and high contrast imaging, including astronomy. In this work, compensators based on liquid crystal polymer and anti-reflection thin-films are presented to correct polarization aberrations in both transmission and reflection configurations. Our method is versatile, allowing for good correction in transmission and reflection due to optical components possessing differing diattenuation and retardance dispersions. Through simulation and experimental validation we show two designs, one correcting the polarization aberrations of a dichroic spectral filter over a 170nm wavelength band, and the other correcting the polarization aberration of an aluminum-coated mirror over a 400nm wavelength band and a 55-degree cone of angles. The measured performance of the polarization aberration compensators shows good agreement with theory. 
    more » « less
  3. Polarization aberrations are found in most optical components due to a materials-differing response tos- andp-polarizations. This differing response can manifest either as diattenuation, retardance, or both. Correction of polarization aberrations, such as these, are critical in many applications such as interferometry, polarimetry, display, and high contrast imaging, including astronomy. In this work, compensators based on liquid crystal polymer and anti-reflection thin-films are presented to correct polarization aberrations in both transmission and reflection configurations. Our method is versatile, allowing for good correction in transmission and reflection due to optical components possessing differing diattenuation and retardance dispersions. Through simulation and experimental validation we show two designs, one correcting the polarization aberrations of a dichroic spectral filter over a 170nm wavelength band, and the other correcting the polarization aberration of an aluminum-coated mirror over a 400nm wavelength band and a 55-degree cone of angles. The measured performance of the polarization aberration compensators shows good agreement with theory. 
    more » « less
  4. RationaleThe electrostatic linear ion trap (ELIT) can be operated as a multi‐reflection time‐of‐flight (MR‐TOF) or Fourier transform (FT) mass analyzer. It has been shown to be capable of performing high‐resolution mass analysis and high‐resolution ion isolations. Although it has been used in charge‐detection mass spectrometry (CDMS), it has not been widely used as a conventional mass spectrometer for ensemble measurements of ions, or for tandem mass spectrometer. The advantages of tandem mass spectrometer with high‐resolution ion isolations in the ELIT have thus not been fully exploited. MethodsA homebuilt ELIT was modified with BaF2viewports to facilitate transmission of a laser beam at the turnaround point of the second ion mirror in the ELIT. Fragmentation that occurs at the turnaround point of these ion mirrors should result in minimal energy partitioning due to the low kinetic energy of ions at these points. The laser was allowed to irradiate ions for a period of many oscillations in the ELIT. ResultsDue to the low energy absorption of gas‐phase ions during each oscillation in the ELIT, fragmentation was found to occur over a range of oscillations in the ELIT generating a homogeneous ion beam. A mirror‐switching pulse is shown to create time‐varying perturbations in this beam that oscillate at the fragment ion characteristic frequencies and generate a time‐domain signal. This was found to recover FT signal for protonated pYGGFL and pSGGFL precursor ions. ConclusionsFragmentation at the turnaround point of an ELIT by continuous‐wave infrared multiphoton dissociation (cw‐IRMPD) is demonstrated. In cases where laser power absorption is low and fragmentation occurs over many laps, a mirror‐switching pulse may be used to recover varying time‐domain signal. The combination of laser activation at the turnaround points and mirror‐switching isolation allows for tandem MS in the ELIT. 
    more » « less
  5. Animals typically respond to their reflection as a conspecific and will respond as if the reflection were another animal that they could interact with, either fearfully or aggressively. We investigated how a modified reflective environment of a standard glass aquarium affects the aggressive and fearful behaviors of the crayfish Orconectes virilis, based on pre-determined behavior criteria. We found that the crayfish were both increasingly aggressive and slightly fearful in the reflective environment compared to minimal behavioral changes in the control non-reflective environment. Thus, our findings support that crayfish recognize their mirror image as a conspecific. 
    more » « less