skip to main content

Search for: All records

Award ID contains: 1737367

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wake vortices in tidally modulated currents past a conical hill in a stratified fluid are investigated using large‐eddy‐simulation. The vortex shedding frequency is altered from its natural steady‐current value leading to synchronization of wake vortices with the tide. The relative frequency (f*), defined as the ratio of natural shedding frequency (fs,c) in a current without tides to the tidal frequency (ft), is varied to expose different regimes of tidal synchronization. Whenf*increases and approaches 0.25, vortex shedding at the body changes from a classical asymmetric Kármán vortex street. The wake evolves downstream to restore the Kármán vortex‐street asymmetry but the discrete spectral peak, associated with wake vortices, is found to differ from bothftandfs,c, a novel result. The spectral peak occurs at the first subharmonic of the tidal frequency when 0.5 ≤ f*< 1 and at the second subharmonic when 0.25 ≤ f*< 0.5.

    more » « less
  2. Abstract Large-eddy simulations (LES) are employed to investigate the role of time-varying currents on the form drag and vortex dynamics of submerged 3D topography in a stratified rotating environment. The current is of the form U c + U t sin(2 πf t t ), where U c is the mean, U t is the tidal component, and f t is its frequency. A conical obstacle is considered in the regime of low Froude number. When tides are absent, eddies are shed at the natural shedding frequency f s , c . The relative frequency is varied in a parametric study, which reveals states of high time-averaged form drag coefficient. There is a twofold amplification of the form drag coefficient relative to the no-tide ( U t = 0) case when lies between 0.5 and 1. The spatial organization of the near-wake vortices in the high drag states is different from a Kármán vortex street. For instance, the vortex shedding from the obstacle is symmetric when and strongly asymmetric when . The increase in form drag with increasing stems from bottom intensification of the pressure in the obstacle lee which we link to changes in flow separation and near-wake vortices. 
    more » « less
  3. null (Ed.)