skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1737634

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding and accurately predicting within-field spatial variability of crop yield play a key role in site-specific management of crop inputs such as irrigation water and fertilizer for optimized crop production. However, such a task is challenged by the complex interaction between crop growth and environmental and managerial factors, such as climate, soil conditions, tillage, and irrigation. In this paper, we present a novel Spatial-temporal Multi-Task Learning algorithm for within-field crop yield prediction in west Texas from 2001 to 2003. This algorithm integrates multiple heterogeneous data sources to learn different features simultaneously, and to aggregate spatial-temporal features by introducing a weighted regularizer to the loss functions. Our comprehensive experimental results consistently outperform the results of other conventional methods, and suggest a promising approach, which improves the landscape of crop prediction research fields. 
    more » « less
  2. Precisely forecasting wind speed is essential for wind power producers and grid operators. However, this task is challenging due to the stochasticity of wind speed. To accurately predict short-term wind speed under uncertainties, this paper proposed a multi-variable stacked LSTMs model (MSLSTM). The proposed method utilizes multiple historical meteorological variables, such as wind speed, temperature, humidity, pressure, dew point, and solar radiation to accurately predict wind speeds. The prediction performance is extensively assessed using real data collected in West Texas, USA. The experimental results show that the proposed MSLSTM can preferably capture and learn uncertainties while output competitive performance. 
    more » « less
  3. Water is a critical natural resource that has significant impacts on human living and society. Growing population and energy consumption exacerbate the scarcity of water and our ability to manage this resource. This demonstration paper presents WaterScope, a smart and connected platform for water resource management, which integrates multiple data sources such as water level data, social media data, and water-related articles. Furthermore, the tool enables forecasting underground water levels, identifying water concerns, sharing knowledge and expertise among stakeholders, and thus bringing new insights to our understanding and insights of the water supplies and resource management. The prototype engages water stakeholders who face problems of similar nature but deal with the problem in an ad-hoc and isolated manner. The interactive WaterScope platform targets creating an interconnected virtual community that aims to improve water supply resilience. 
    more » « less
  4. Water plays a critical role in our living and manufacturing activities. The continuously growing exploitation of water over the aquifer poses a risk for over-extraction and pollution, leading to many negative effects on land irrigation. Therefore, predicting aquifer water levels accurately is urgently important, which can help us prepare water demands ahead of time. In this study, we employ the Long-Short Term Memory (LSTM) model to predict the saturated thickness of an aquifer in the Southern High Plains Aquifer System in Texas and exploit TensorBoard as a guide for model configurations. The Root Mean Squared Error of this study shows that the LSTM model can provide a good prediction capability using multiple data sources, and provides a good visualization tool to help us understand and evaluate the model configuration. 
    more » « less