- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
McCormick, Tyler (2)
-
Cesare, Nina (1)
-
Clark, Samuel (1)
-
Gore, John L (1)
-
Lee, Hedwig (1)
-
Li, Zehang (1)
-
Li, Zehang Richard (1)
-
McCormick, T. H. (1)
-
McCormick, Tyler H. (1)
-
Mccormick, Tyler H (1)
-
Rudin, Cynthia (1)
-
Spiro, Emma (1)
-
Wang, Fulton (1)
-
Westling, T. (1)
-
Zagheni, Emilio (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (4)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Westling, T.; McCormick, T. H. (, Journal of Computational and Graphical Statistics)null (Ed.)
-
Li, Zehang; McCormick, Tyler; Clark, Samuel (, Proceedings of the 36th International Conference on Machine Learning)null (Ed.)
-
Cesare, Nina; Lee, Hedwig; McCormick, Tyler; Spiro, Emma; Zagheni, Emilio (, Demography)
-
Wang, Fulton; Rudin, Cynthia; Mccormick, Tyler H; Gore, John L (, Biostatistics)null (Ed.)Summary In many clinical settings, a patient outcome takes the form of a scalar time series with a recovery curve shape, which is characterized by a sharp drop due to a disruptive event (e.g., surgery) and subsequent monotonic smooth rise towards an asymptotic level not exceeding the pre-event value. We propose a Bayesian model that predicts recovery curves based on information available before the disruptive event. A recovery curve of interest is the quantified sexual function of prostate cancer patients after prostatectomy surgery. We illustrate the utility of our model as a pre-treatment medical decision aid, producing personalized predictions that are both interpretable and accurate. We uncover covariate relationships that agree with and supplement that in existing medical literature.more » « less
An official website of the United States government

Full Text Available